找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Learning Theory; 4th European Confere Paul Fischer,Hans Ulrich Simon Conference proceedings 1999 Springer-Verlag Berlin Heide

[復(fù)制鏈接]
查看: 37821|回復(fù): 62
樓主
發(fā)表于 2025-3-21 17:41:36 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computational Learning Theory
副標(biāo)題4th European Confere
編輯Paul Fischer,Hans Ulrich Simon
視頻videohttp://file.papertrans.cn/233/232577/232577.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computational Learning Theory; 4th European Confere Paul Fischer,Hans Ulrich Simon Conference proceedings 1999 Springer-Verlag Berlin Heide
出版日期Conference proceedings 1999
關(guān)鍵詞Algorithmic Learning; Computational Learning; Inductive Inference; Online Learning; learning; learning th
版次1
doihttps://doi.org/10.1007/3-540-49097-3
isbn_softcover978-3-540-65701-9
isbn_ebook978-3-540-49097-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 1999
The information of publication is updating

書目名稱Computational Learning Theory影響因子(影響力)




書目名稱Computational Learning Theory影響因子(影響力)學(xué)科排名




書目名稱Computational Learning Theory網(wǎng)絡(luò)公開度




書目名稱Computational Learning Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computational Learning Theory被引頻次




書目名稱Computational Learning Theory被引頻次學(xué)科排名




書目名稱Computational Learning Theory年度引用




書目名稱Computational Learning Theory年度引用學(xué)科排名




書目名稱Computational Learning Theory讀者反饋




書目名稱Computational Learning Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:29:20 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:45:13 | 只看該作者
地板
發(fā)表于 2025-3-22 08:36:15 | 只看該作者
https://doi.org/10.1007/978-3-322-87794-9hted average of the experts’ predictions. We show that for a large class of loss functions, even with the simplified prediction rule the additional loss of the algorithm over the loss of the best expert is at most . ln ., where . is the number of experts and . a constant that depends on the loss fun
5#
發(fā)表于 2025-3-22 11:46:19 | 只看該作者
https://doi.org/10.1007/978-3-658-00686-0operly between hyperrobust Ex-learning and hyperrobust BC-learning. Furthermore, the bounded totally reliably BC-learnable classes are characterized in terms of infinite branches of certain enumerable families of bounded recursive trees. A class of infinite branches of a further family of trees sepa
6#
發(fā)表于 2025-3-22 15:06:41 | 只看該作者
https://doi.org/10.1007/978-3-658-00686-0lds a uniformly decidable family of languages and has effective bounded finite thickness, then for each natural number . > 0, the class of languages defined by formal systems of length ≤ .:.The above sufficient conditions are employed to give an ordinal mind change bound for learnability of minimal
7#
發(fā)表于 2025-3-22 19:05:35 | 只看該作者
Open Theoretical Questions in Reinforcement Learning in a given state and ending upon arrival in a terminal state, terminating the series above. In other cases the interaction is continual, without interruption, and the sum may have an infinite number of terms (in which case we usually assume γ < 1). Infinite horizon cases with γ = 1 are also possibl
8#
發(fā)表于 2025-3-22 21:59:07 | 只看該作者
9#
發(fā)表于 2025-3-23 04:02:53 | 只看該作者
10#
發(fā)表于 2025-3-23 09:25:01 | 只看該作者
Averaging Expert Predictionshted average of the experts’ predictions. We show that for a large class of loss functions, even with the simplified prediction rule the additional loss of the algorithm over the loss of the best expert is at most . ln ., where . is the number of experts and . a constant that depends on the loss fun
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇宁| 新化县| 宜城市| 邳州市| 通州区| 白河县| 广东省| 漯河市| 潼南县| 和田市| 巴林左旗| 海城市| 石首市| 弋阳县| 邹城市| 修文县| 丹江口市| 安新县| 台中市| 洛川县| 浦县| 沂南县| 陵川县| 岐山县| 淮南市| 南宫市| 永兴县| 连南| 攀枝花市| 定边县| 九龙城区| 清河县| 和顺县| 修水县| 建始县| 关岭| 黔东| 大城县| 南靖县| 南部县| 观塘区|