找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Learning Theory; 4th European Confere Paul Fischer,Hans Ulrich Simon Conference proceedings 1999 Springer-Verlag Berlin Heide

[復(fù)制鏈接]
樓主: BRISK
21#
發(fā)表于 2025-3-25 05:47:12 | 只看該作者
22#
發(fā)表于 2025-3-25 09:45:58 | 只看該作者
23#
發(fā)表于 2025-3-25 13:29:27 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:51 | 只看該作者
25#
發(fā)表于 2025-3-25 20:15:32 | 只看該作者
Strukturiert es Programmieren in Cnsion with respect to the average case. We show that the teaching complexity in the best case is bounded by the self-directed learning complexity. It is also bounded by the VCdimension, if the concept class is intersection-closed. This does not hold for arbitrary concept classes. We find examples which substantiate this gap.
26#
發(fā)表于 2025-3-26 00:40:55 | 只看該作者
Learnability of Quantified Formulasroperty of the basis of relations, their clone of polymorphisms. Finally, we use this technique to give a simpler proof of the already known dichotomy theorem over boolean domains and we present an extension of this theorem to bases with infinite size.
27#
發(fā)表于 2025-3-26 06:12:48 | 只看該作者
28#
發(fā)表于 2025-3-26 11:09:49 | 只看該作者
A Geometric Approach to Leveraging Weak Learners For this potential function, the direction of steepest descent can have negative components. Therefore we provide two transformations for obtaining suitable distributions from these directions of steepest descent. The resulting algorithms have bounds that are incomparable to AdaBoost’s, and their empirical performance is similar to AdaBoost’s.
29#
發(fā)表于 2025-3-26 13:26:39 | 只看該作者
Hardness Results for Neural Network Approximation Problemsnits, it is NP-hard to find such a network that makes mistakes on a proportion smaller than .. of the examples, for some constant .. We prove a similar result for the problem of approximately minimizing the quadratic loss of a two-layer network with a sigmoid output unit.
30#
發(fā)表于 2025-3-26 17:16:08 | 只看該作者
Learning Range Restricted Horn Expressionser utilises a previous result on learning function free Horn expressions. This is done by using techniques for flattening and unflattening of examples and clauses, and a procedure for model finding for range restricted expressions. This procedure can also be used to solve the implication problem for this class.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辽阳县| 定边县| 嵊州市| 昔阳县| 阿巴嘎旗| 彭州市| 宜章县| 洛川县| 曲靖市| 武强县| 雷波县| 修水县| 米脂县| 霞浦县| 隆化县| 宣恩县| 大荔县| 弥勒县| 高碑店市| 宁化县| 南江县| 海盐县| 雅安市| 乌兰察布市| 榆树市| 荆门市| 南木林县| 亚东县| 恭城| 呼伦贝尔市| 乐山市| 南陵县| 嘉鱼县| 壤塘县| 兴义市| 长武县| 大兴区| 托克托县| 聊城市| 韶关市| 郴州市|