找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Learning Theory; 4th European Confere Paul Fischer,Hans Ulrich Simon Conference proceedings 1999 Springer-Verlag Berlin Heide

[復制鏈接]
樓主: BRISK
21#
發(fā)表于 2025-3-25 05:47:12 | 只看該作者
22#
發(fā)表于 2025-3-25 09:45:58 | 只看該作者
23#
發(fā)表于 2025-3-25 13:29:27 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:51 | 只看該作者
25#
發(fā)表于 2025-3-25 20:15:32 | 只看該作者
Strukturiert es Programmieren in Cnsion with respect to the average case. We show that the teaching complexity in the best case is bounded by the self-directed learning complexity. It is also bounded by the VCdimension, if the concept class is intersection-closed. This does not hold for arbitrary concept classes. We find examples which substantiate this gap.
26#
發(fā)表于 2025-3-26 00:40:55 | 只看該作者
Learnability of Quantified Formulasroperty of the basis of relations, their clone of polymorphisms. Finally, we use this technique to give a simpler proof of the already known dichotomy theorem over boolean domains and we present an extension of this theorem to bases with infinite size.
27#
發(fā)表于 2025-3-26 06:12:48 | 只看該作者
28#
發(fā)表于 2025-3-26 11:09:49 | 只看該作者
A Geometric Approach to Leveraging Weak Learners For this potential function, the direction of steepest descent can have negative components. Therefore we provide two transformations for obtaining suitable distributions from these directions of steepest descent. The resulting algorithms have bounds that are incomparable to AdaBoost’s, and their empirical performance is similar to AdaBoost’s.
29#
發(fā)表于 2025-3-26 13:26:39 | 只看該作者
Hardness Results for Neural Network Approximation Problemsnits, it is NP-hard to find such a network that makes mistakes on a proportion smaller than .. of the examples, for some constant .. We prove a similar result for the problem of approximately minimizing the quadratic loss of a two-layer network with a sigmoid output unit.
30#
發(fā)表于 2025-3-26 17:16:08 | 只看該作者
Learning Range Restricted Horn Expressionser utilises a previous result on learning function free Horn expressions. This is done by using techniques for flattening and unflattening of examples and clauses, and a procedure for model finding for range restricted expressions. This procedure can also be used to solve the implication problem for this class.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 10:03
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
昌邑市| 农安县| 成武县| 黔西| 湘乡市| 城步| 文昌市| 盘山县| 垣曲县| 包头市| 望都县| 西贡区| 平顶山市| 佛教| 兴义市| 丹棱县| 聊城市| 澄江县| 安宁市| 寿光市| 嵊泗县| 东兴市| 永兴县| 洪江市| 化隆| 汉阴县| 芜湖县| 玉门市| 波密县| 从化市| 长阳| 石家庄市| 七台河市| 微山县| 岑巩县| 静宁县| 迭部县| 大安市| 崇明县| 阿荣旗| 锦屏县|