找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Learning Theory; 4th European Confere Paul Fischer,Hans Ulrich Simon Conference proceedings 1999 Springer-Verlag Berlin Heide

[復制鏈接]
樓主: BRISK
21#
發(fā)表于 2025-3-25 05:47:12 | 只看該作者
22#
發(fā)表于 2025-3-25 09:45:58 | 只看該作者
23#
發(fā)表于 2025-3-25 13:29:27 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:51 | 只看該作者
25#
發(fā)表于 2025-3-25 20:15:32 | 只看該作者
Strukturiert es Programmieren in Cnsion with respect to the average case. We show that the teaching complexity in the best case is bounded by the self-directed learning complexity. It is also bounded by the VCdimension, if the concept class is intersection-closed. This does not hold for arbitrary concept classes. We find examples which substantiate this gap.
26#
發(fā)表于 2025-3-26 00:40:55 | 只看該作者
Learnability of Quantified Formulasroperty of the basis of relations, their clone of polymorphisms. Finally, we use this technique to give a simpler proof of the already known dichotomy theorem over boolean domains and we present an extension of this theorem to bases with infinite size.
27#
發(fā)表于 2025-3-26 06:12:48 | 只看該作者
28#
發(fā)表于 2025-3-26 11:09:49 | 只看該作者
A Geometric Approach to Leveraging Weak Learners For this potential function, the direction of steepest descent can have negative components. Therefore we provide two transformations for obtaining suitable distributions from these directions of steepest descent. The resulting algorithms have bounds that are incomparable to AdaBoost’s, and their empirical performance is similar to AdaBoost’s.
29#
發(fā)表于 2025-3-26 13:26:39 | 只看該作者
Hardness Results for Neural Network Approximation Problemsnits, it is NP-hard to find such a network that makes mistakes on a proportion smaller than .. of the examples, for some constant .. We prove a similar result for the problem of approximately minimizing the quadratic loss of a two-layer network with a sigmoid output unit.
30#
發(fā)表于 2025-3-26 17:16:08 | 只看該作者
Learning Range Restricted Horn Expressionser utilises a previous result on learning function free Horn expressions. This is done by using techniques for flattening and unflattening of examples and clauses, and a procedure for model finding for range restricted expressions. This procedure can also be used to solve the implication problem for this class.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 10:03
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
商南县| 读书| 大足县| 台江县| 措美县| 正镶白旗| 沈阳市| 尚义县| 克拉玛依市| 临泉县| 上蔡县| 温州市| 达孜县| 阿拉善盟| 汶川县| 惠来县| 新营市| 金乡县| 农安县| 崇阳县| 台湾省| 古田县| 渭源县| 滦平县| 六安市| 金寨县| 安庆市| 株洲县| 那曲县| 任丘市| 陵川县| 桃源县| 新宾| 城步| 白朗县| 叶城县| 怀远县| 凤台县| 承德市| 萨嘎县| 虞城县|