找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms; A Convex Optimizatio Bhabesh Deka,Sumit Datta Book 2019 Springer Nat

[復制鏈接]
查看: 27823|回復: 37
樓主
發(fā)表于 2025-3-21 19:24:46 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms
副標題A Convex Optimizatio
編輯Bhabesh Deka,Sumit Datta
視頻videohttp://file.papertrans.cn/232/231976/231976.mp4
概述Basics of compressed sensing MRI reconstruction.Covers recently developed reconstruction algorithms.Presents experimental results both graphically and visually.Includes comparative analyses of results
叢書名稱Springer Series on Bio- and Neurosystems
圖書封面Titlebook: Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms; A Convex Optimizatio Bhabesh Deka,Sumit Datta Book 2019 Springer Nat
描述.This book presents a comprehensive review of the recent developments in fast L1-norm regularization-based compressed sensing (CS) magnetic resonance image reconstruction algorithms. Compressed sensing magnetic resonance imaging (CS-MRI) is able to reduce the scan time of MRI considerably as it is possible to reconstruct MR images from only a few measurements in the k-space; far below the requirements of the Nyquist sampling rate. L1-norm-based regularization problems can be solved efficiently using the state-of-the-art convex optimization techniques, which in general outperform the greedy techniques in terms of quality of reconstructions. Recently, fast convex optimization based reconstruction algorithms have been developed which are also able to achieve the benchmarks for the use of CS-MRI in clinical practice. This book enables graduate students, researchers, and medical practitioners working in the field of medical image processing, particularly in MRI to understand the need forthe CS in MRI, and thereby how it could revolutionize the soft tissue imaging to benefit healthcare technology without making major changes in the existing scanner hardware. It would be particularly usef
出版日期Book 2019
關鍵詞Rapid magnetic resonance image reconstruction; k-space undersampling; Compressed sensing MRI; Fast L1-n
版次1
doihttps://doi.org/10.1007/978-981-13-3597-6
isbn_ebook978-981-13-3597-6Series ISSN 2520-8535 Series E-ISSN 2520-8543
issn_series 2520-8535
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms影響因子(影響力)




書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms影響因子(影響力)學科排名




書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms網絡公開度




書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms網絡公開度學科排名




書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms被引頻次




書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms被引頻次學科排名




書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms年度引用




書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms年度引用學科排名




書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms讀者反饋




書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:03:39 | 只看該作者
Bhabesh Deka,Sumit DattaBasics of compressed sensing MRI reconstruction.Covers recently developed reconstruction algorithms.Presents experimental results both graphically and visually.Includes comparative analyses of results
板凳
發(fā)表于 2025-3-22 02:23:52 | 只看該作者
Springer Series on Bio- and Neurosystemshttp://image.papertrans.cn/c/image/231976.jpg
地板
發(fā)表于 2025-3-22 05:06:51 | 只看該作者
https://doi.org/10.1007/978-981-13-3597-6Rapid magnetic resonance image reconstruction; k-space undersampling; Compressed sensing MRI; Fast L1-n
5#
發(fā)表于 2025-3-22 11:49:36 | 只看該作者
Springer Nature Singapore Pte Ltd. 2019
6#
發(fā)表于 2025-3-22 14:37:08 | 只看該作者
7#
發(fā)表于 2025-3-22 20:04:40 | 只看該作者
Schlussbemerkungen und Ausblick,mpling theorem. This in return increases the computational effort for reconstruction which may be dealt with some efficient solvers based on convex optimization. To reconstruct MR image from undersampled Fourier data, an underdetermined system of equations is needed to be solved with some additional
8#
發(fā)表于 2025-3-22 23:33:50 | 只看該作者
9#
發(fā)表于 2025-3-23 03:07:35 | 只看該作者
Strategisches Kompetenz-Managementtic MRI datasets. From experimental results, it has been observed that composite splitting based algorithms outperform others in terms of reconstruction quality, CPU time, and visual results. Additionally, to demonstrate the effectiveness of iterative reweighting an adaptive weighting scheme is comb
10#
發(fā)表于 2025-3-23 09:12:08 | 只看該作者
https://doi.org/10.1007/978-3-8349-8186-8uccessfully integrated CS-MRI into the existing MRI scanner for clinical studies and within a short span of time it would be also available at a commercial scale. This chapter mainly aims to throw lights upon creating a set of common goals that practical CS-MRI reconstruction algorithms should proje
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-29 09:54
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
卫辉市| 榕江县| 泾源县| 茶陵县| 舞阳县| 康马县| 彰化市| 磐石市| 赣榆县| 金平| 太保市| 梨树县| 晋江市| 永吉县| 康乐县| 千阳县| 神池县| 习水县| 宁远县| 土默特左旗| 宜宾市| 彭泽县| 兴城市| 渭南市| 黔西县| 鸡东县| 仲巴县| 盐山县| 昭平县| 山阴县| 鄂州市| 波密县| 金坛市| 略阳县| 文成县| 周至县| 芜湖县| 通榆县| 随州市| 平乡县| 通辽市|