找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms; A Convex Optimizatio Bhabesh Deka,Sumit Datta Book 2019 Springer Nat

[復(fù)制鏈接]
樓主: 審美家
11#
發(fā)表于 2025-3-23 13:14:36 | 只看該作者
12#
發(fā)表于 2025-3-23 16:15:31 | 只看該作者
Introduction to Compressed Sensing Magnetic Resonance Imaging, domain. However, it has a fundamental limitation of being slow or having a long data acquisition time. Due to this, MRI is restricted in some clinical applications. Compressed sensing in MRI demonstrates that it is possible to reconstruct good quality MR images from a fewer k-space measurements. In
13#
發(fā)表于 2025-3-23 19:41:11 | 只看該作者
CS-MRI Reconstruction Problem,mpling theorem. This in return increases the computational effort for reconstruction which may be dealt with some efficient solvers based on convex optimization. To reconstruct MR image from undersampled Fourier data, an underdetermined system of equations is needed to be solved with some additional
14#
發(fā)表于 2025-3-24 02:01:28 | 只看該作者
Fast Algorithms for Compressed Sensing MRI Reconstruction,tion algorithms. The main focus here is to achieve throughputs of clinical compressed sensing MR image reconstruction in terms of quality of reconstruction and computational time. In this chapter, we briefly review some of the recently developed convex optimization-based algorithms for compressed se
15#
發(fā)表于 2025-3-24 06:16:17 | 只看該作者
16#
發(fā)表于 2025-3-24 08:30:52 | 只看該作者
CS-MRI Benchmarks and Current Trends,uccessfully integrated CS-MRI into the existing MRI scanner for clinical studies and within a short span of time it would be also available at a commercial scale. This chapter mainly aims to throw lights upon creating a set of common goals that practical CS-MRI reconstruction algorithms should proje
17#
發(fā)表于 2025-3-24 11:25:05 | 只看該作者
Applications of CS-MRI in Bioinformatics and Neuroinformatics,onance spectroscopy (MRS). It gives valuable information about anatomical structure, the functioning of organs, neuronal activity, and abnormality inside the human body. Although MRI has a number of clinical advantages, it suffers from a fundamental limitation, i.e., slow data acquisition resulting
18#
發(fā)表于 2025-3-24 17:19:08 | 只看該作者
2520-8535 eed forthe CS in MRI, and thereby how it could revolutionize the soft tissue imaging to benefit healthcare technology without making major changes in the existing scanner hardware. It would be particularly usef978-981-13-3597-6Series ISSN 2520-8535 Series E-ISSN 2520-8543
19#
發(fā)表于 2025-3-24 20:59:38 | 只看該作者
20#
發(fā)表于 2025-3-25 02:31:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 14:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泌阳县| 苏州市| 新丰县| 托克托县| 齐齐哈尔市| 辛集市| 周宁县| 凉山| 宁远县| 丹凤县| 毕节市| 铜鼓县| 彝良县| 盘锦市| 汝城县| 贡嘎县| 玉山县| 安岳县| 阳城县| 孟州市| 宜君县| 怀宁县| 建始县| 威信县| 福海县| 霍林郭勒市| 浦城县| 柳江县| 湟源县| 科技| 仙居县| 常山县| 大田县| 济阳县| 无锡市| 宝清县| 姜堰市| 西盟| 博乐市| 禄劝| 沾益县|