找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms; A Convex Optimizatio Bhabesh Deka,Sumit Datta Book 2019 Springer Nat

[復(fù)制鏈接]
查看: 27826|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:24:46 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms
副標(biāo)題A Convex Optimizatio
編輯Bhabesh Deka,Sumit Datta
視頻videohttp://file.papertrans.cn/232/231976/231976.mp4
概述Basics of compressed sensing MRI reconstruction.Covers recently developed reconstruction algorithms.Presents experimental results both graphically and visually.Includes comparative analyses of results
叢書名稱Springer Series on Bio- and Neurosystems
圖書封面Titlebook: Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms; A Convex Optimizatio Bhabesh Deka,Sumit Datta Book 2019 Springer Nat
描述.This book presents a comprehensive review of the recent developments in fast L1-norm regularization-based compressed sensing (CS) magnetic resonance image reconstruction algorithms. Compressed sensing magnetic resonance imaging (CS-MRI) is able to reduce the scan time of MRI considerably as it is possible to reconstruct MR images from only a few measurements in the k-space; far below the requirements of the Nyquist sampling rate. L1-norm-based regularization problems can be solved efficiently using the state-of-the-art convex optimization techniques, which in general outperform the greedy techniques in terms of quality of reconstructions. Recently, fast convex optimization based reconstruction algorithms have been developed which are also able to achieve the benchmarks for the use of CS-MRI in clinical practice. This book enables graduate students, researchers, and medical practitioners working in the field of medical image processing, particularly in MRI to understand the need forthe CS in MRI, and thereby how it could revolutionize the soft tissue imaging to benefit healthcare technology without making major changes in the existing scanner hardware. It would be particularly usef
出版日期Book 2019
關(guān)鍵詞Rapid magnetic resonance image reconstruction; k-space undersampling; Compressed sensing MRI; Fast L1-n
版次1
doihttps://doi.org/10.1007/978-981-13-3597-6
isbn_ebook978-981-13-3597-6Series ISSN 2520-8535 Series E-ISSN 2520-8543
issn_series 2520-8535
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms影響因子(影響力)




書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms影響因子(影響力)學(xué)科排名




書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms網(wǎng)絡(luò)公開度




書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms被引頻次




書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms被引頻次學(xué)科排名




書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms年度引用




書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms年度引用學(xué)科排名




書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms讀者反饋




書目名稱Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:03:39 | 只看該作者
Bhabesh Deka,Sumit DattaBasics of compressed sensing MRI reconstruction.Covers recently developed reconstruction algorithms.Presents experimental results both graphically and visually.Includes comparative analyses of results
板凳
發(fā)表于 2025-3-22 02:23:52 | 只看該作者
Springer Series on Bio- and Neurosystemshttp://image.papertrans.cn/c/image/231976.jpg
地板
發(fā)表于 2025-3-22 05:06:51 | 只看該作者
https://doi.org/10.1007/978-981-13-3597-6Rapid magnetic resonance image reconstruction; k-space undersampling; Compressed sensing MRI; Fast L1-n
5#
發(fā)表于 2025-3-22 11:49:36 | 只看該作者
Springer Nature Singapore Pte Ltd. 2019
6#
發(fā)表于 2025-3-22 14:37:08 | 只看該作者
7#
發(fā)表于 2025-3-22 20:04:40 | 只看該作者
Schlussbemerkungen und Ausblick,mpling theorem. This in return increases the computational effort for reconstruction which may be dealt with some efficient solvers based on convex optimization. To reconstruct MR image from undersampled Fourier data, an underdetermined system of equations is needed to be solved with some additional
8#
發(fā)表于 2025-3-22 23:33:50 | 只看該作者
9#
發(fā)表于 2025-3-23 03:07:35 | 只看該作者
Strategisches Kompetenz-Managementtic MRI datasets. From experimental results, it has been observed that composite splitting based algorithms outperform others in terms of reconstruction quality, CPU time, and visual results. Additionally, to demonstrate the effectiveness of iterative reweighting an adaptive weighting scheme is comb
10#
發(fā)表于 2025-3-23 09:12:08 | 只看該作者
https://doi.org/10.1007/978-3-8349-8186-8uccessfully integrated CS-MRI into the existing MRI scanner for clinical studies and within a short span of time it would be also available at a commercial scale. This chapter mainly aims to throw lights upon creating a set of common goals that practical CS-MRI reconstruction algorithms should proje
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 14:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遵义县| 垫江县| 维西| 漠河县| 赤壁市| 仙游县| 宁陕县| 德庆县| 新昌县| 闵行区| 瑞丽市| 松滋市| 营口市| 平陆县| 上栗县| 甘洛县| 罗城| 霍山县| 上思县| 虞城县| 同仁县| 彰武县| 赤城县| 肥东县| 昭平县| 湄潭县| 化州市| 饶平县| 察隅县| 乌鲁木齐县| 石狮市| 东阳市| 长宁区| 阳原县| 拉孜县| 罗甸县| 黎平县| 开平市| 南靖县| 内丘县| 宝鸡市|