找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complexity of Lattice Problems; A Cryptographic Pers Daniele Micciancio,Shafi Goldwasser Book 2002 Springer Science+Business Media New York

[復制鏈接]
樓主: 信賴
11#
發(fā)表于 2025-3-23 11:59:39 | 只看該作者
Statistical Continuum Mechanicsto find the shortest nonzero vector in the lattice generated by . . In Chapter 3 we have already studied another important algorithmic problem on lattices: the closest vector problem (CVP). In CVP, in addition to the lattice basis ., one is given a target vector ., and the goal is to find the lattic
12#
發(fā)表于 2025-3-23 13:51:45 | 只看該作者
Philip Kokic,Jens Breckling,Oliver Lübkeen that the minimum distance between lattice points (or, equivalently, the length of the shortest non-zero vector in the lattice) is at least λ? Clearly the answer depends on the ratio λ/. only, as both the lattice and the sphere can be scaled up or down preserving λ/.. If we drop the requirement th
13#
發(fā)表于 2025-3-23 20:55:39 | 只看該作者
14#
發(fā)表于 2025-3-24 00:42:10 | 只看該作者
Philip Kokic,Jens Breckling,Oliver Lübkemplexity point of view. In fact, the algorithms presented in Chapter 2 to approximately solve SVP and CVP do somehow more than just finding an approximately shortest lattice vector, or a lattice vector approximately closest to a given target. For example, the LLL algorithm on input a lattice basis .
15#
發(fā)表于 2025-3-24 05:22:54 | 只看該作者
16#
發(fā)表于 2025-3-24 06:45:17 | 只看該作者
17#
發(fā)表于 2025-3-24 13:33:51 | 只看該作者
Statistical Continuum Mechanicsiew, and, in particular we investigate the hardness of the closest vector problem. We first consider the problem of solving CVP exactly, and prove that this problem is hard for NP. Therefore no efficient algorithm to solve CVP exists, unless P equals NP.
18#
發(fā)表于 2025-3-24 17:22:44 | 只看該作者
19#
發(fā)表于 2025-3-24 20:14:35 | 只看該作者
20#
發(fā)表于 2025-3-25 00:13:29 | 只看該作者
Low-Degree Hypergraphs,ces or matrices. A . is a pair (., .), where . is a finite set of . and . is a collection of subsets of ., called .. If all the elements of . have the same size, then we say that (., .) is ., and the common size of all hyperedges is called the . of the hypergraph.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 02:00
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
淮安市| 神木县| 招远市| 福泉市| 获嘉县| 吉林市| 罗源县| 余江县| 东海县| 铁岭市| 行唐县| 台中县| 尚志市| 镇江市| 香港| 两当县| 兴安县| 盐津县| 荣成市| 慈溪市| 隆回县| 雅安市| 额尔古纳市| 上杭县| 体育| 灵山县| 绩溪县| 阜康市| 兴和县| 吉隆县| 大庆市| 平昌县| 巧家县| 珲春市| 郑州市| 汉川市| 五大连池市| 凭祥市| 沙雅县| 沙坪坝区| 黎平县|