找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complexity of Lattice Problems; A Cryptographic Pers Daniele Micciancio,Shafi Goldwasser Book 2002 Springer Science+Business Media New York

[復(fù)制鏈接]
樓主: 信賴
21#
發(fā)表于 2025-3-25 05:21:32 | 只看該作者
0893-3405 d. De- spite their apparent simplicity, lattices hide a rich combinatorial struc- ture, which has attracted the attention of great mathematicians over the last two centuries. Not surprisingly, lattices have found numerous ap- plications in mathematics and computer science, ranging from number theory
22#
發(fā)表于 2025-3-25 08:12:51 | 只看該作者
23#
發(fā)表于 2025-3-25 12:13:59 | 只看該作者
Statistical Continuum Mechanics norm. In this chapter, we investigate the computational complexity of SVP in any . . norm other than . ., with special attention to the Euclidean norm . .. In the rest of this chapter the . . norm is assumed, unless explicitly stated otherwise.
24#
發(fā)表于 2025-3-25 18:31:35 | 只看該作者
Philip Kokic,Jens Breckling,Oliver Lübke+ ., the centers of the balls are inside a sphere of radius .. We want to determine for which values of λ/. we can pack exponentially (in .) many points. Here, and in the rest of this chapter, “exponential” means a function of the form [2^{n^c }] for some fixed constant . independent of ..)
25#
發(fā)表于 2025-3-25 23:29:37 | 只看該作者
Philip Kokic,Jens Breckling,Oliver LübkeThe problem of finding a “good” basis for a given lattice is generically called the . problem. Unfortunately, there is not a unique, clearly defined notion of what makes a basis good, and several different definitions of reduced basis have been suggested. In this chapter we consider the most importa
26#
發(fā)表于 2025-3-26 02:46:42 | 只看該作者
27#
發(fā)表于 2025-3-26 07:53:24 | 只看該作者
28#
發(fā)表于 2025-3-26 11:36:27 | 只看該作者
Shortest Vector Problem, norm. In this chapter, we investigate the computational complexity of SVP in any . . norm other than . ., with special attention to the Euclidean norm . .. In the rest of this chapter the . . norm is assumed, unless explicitly stated otherwise.
29#
發(fā)表于 2025-3-26 15:44:18 | 只看該作者
30#
發(fā)表于 2025-3-26 19:05:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
个旧市| 绥宁县| 巧家县| 赤壁市| 临湘市| 建阳市| 玉环县| 明水县| 忻州市| 新营市| 海南省| 辛集市| 盐源县| 景德镇市| 晋中市| 来宾市| 永兴县| 昌图县| 阳东县| 西充县| 盱眙县| 南木林县| 宁波市| 长顺县| 山东| 塔河县| 荣成市| 衡东县| 南澳县| 峨山| 鞍山市| 安丘市| 宜川县| 桃江县| 名山县| 棋牌| 岗巴县| 崇仁县| 舞阳县| 阜新| 玛沁县|