找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complexity of Lattice Problems; A Cryptographic Pers Daniele Micciancio,Shafi Goldwasser Book 2002 Springer Science+Business Media New York

[復制鏈接]
樓主: 信賴
21#
發(fā)表于 2025-3-25 05:21:32 | 只看該作者
0893-3405 d. De- spite their apparent simplicity, lattices hide a rich combinatorial struc- ture, which has attracted the attention of great mathematicians over the last two centuries. Not surprisingly, lattices have found numerous ap- plications in mathematics and computer science, ranging from number theory
22#
發(fā)表于 2025-3-25 08:12:51 | 只看該作者
23#
發(fā)表于 2025-3-25 12:13:59 | 只看該作者
Statistical Continuum Mechanics norm. In this chapter, we investigate the computational complexity of SVP in any . . norm other than . ., with special attention to the Euclidean norm . .. In the rest of this chapter the . . norm is assumed, unless explicitly stated otherwise.
24#
發(fā)表于 2025-3-25 18:31:35 | 只看該作者
Philip Kokic,Jens Breckling,Oliver Lübke+ ., the centers of the balls are inside a sphere of radius .. We want to determine for which values of λ/. we can pack exponentially (in .) many points. Here, and in the rest of this chapter, “exponential” means a function of the form [2^{n^c }] for some fixed constant . independent of ..)
25#
發(fā)表于 2025-3-25 23:29:37 | 只看該作者
Philip Kokic,Jens Breckling,Oliver LübkeThe problem of finding a “good” basis for a given lattice is generically called the . problem. Unfortunately, there is not a unique, clearly defined notion of what makes a basis good, and several different definitions of reduced basis have been suggested. In this chapter we consider the most importa
26#
發(fā)表于 2025-3-26 02:46:42 | 只看該作者
27#
發(fā)表于 2025-3-26 07:53:24 | 只看該作者
28#
發(fā)表于 2025-3-26 11:36:27 | 只看該作者
Shortest Vector Problem, norm. In this chapter, we investigate the computational complexity of SVP in any . . norm other than . ., with special attention to the Euclidean norm . .. In the rest of this chapter the . . norm is assumed, unless explicitly stated otherwise.
29#
發(fā)表于 2025-3-26 15:44:18 | 只看該作者
30#
發(fā)表于 2025-3-26 19:05:03 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 02:00
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
东阳市| 晋城| 奈曼旗| 丹阳市| 富源县| 双江| 逊克县| 蒙城县| 恩施市| 襄汾县| 建瓯市| 汾西县| 东至县| 时尚| 城固县| 新田县| 牙克石市| 香格里拉县| 乌恰县| 大竹县| 兰西县| 万安县| 同心县| 厦门市| 华宁县| 玛多县| 苏尼特左旗| 南雄市| 岗巴县| 阿拉尔市| 永吉县| 那坡县| 阿合奇县| 临邑县| 平舆县| 淮安市| 陈巴尔虎旗| 和平区| 宜春市| 隆化县| 盐亭县|