找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Tori; Christina Birkenhake,Herbert Lange Book 1999 Springer Science+Business Media New York 1999 Abelian variety.Algebra.Cohomolog

[復(fù)制鏈接]
樓主: 聯(lián)系
21#
發(fā)表于 2025-3-25 07:11:38 | 只看該作者
22#
發(fā)表于 2025-3-25 09:02:33 | 只看該作者
Complex Tori978-1-4612-1566-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
23#
發(fā)表于 2025-3-25 15:09:54 | 只看該作者
24#
發(fā)表于 2025-3-25 19:45:50 | 只看該作者
25#
發(fā)表于 2025-3-25 21:55:59 | 只看該作者
https://doi.org/10.1007/978-3-030-29966-8 give their definitions, deduce some of their properties and see how they are related. We omit some of their most important aspects, for example the Abel-Jacobi map, which reflects the geometry of the manifold ., since here we are more interested in the complex tori.
26#
發(fā)表于 2025-3-26 02:18:20 | 只看該作者
Stars, Fans, and Consumption in the 1950scial case of abelian varieties, . is a hermitian symmetric space. To be more precise, there are three series of irreducible hermitian symmetric spaces of the noncompact type CI (the Siegel upper half spaces), AIII, and DIII such that any . is a product of members of these (see [Sh] or [CAV], Chapter 9).
27#
發(fā)表于 2025-3-26 07:25:31 | 只看該作者
Stars, Fans, and Consumption in the 1950s.,.,., etc. and their products. In Chapter 6 we showed that these parameter spaces are disjoint unions of finitely many flag domains. In particular every such space is of the form .. with classical group . and . ? . a closed subgroup.
28#
發(fā)表于 2025-3-26 10:14:45 | 只看該作者
https://doi.org/10.1007/978-3-030-29966-8. = ?./ Λ with Λ a lattice in ?.. A complex torus is a complex manifold of dimension .. It inherits the structure of a complex Lie group from the vector space ?.. In this chapter we study some properties of complex tori without any additional structure.
29#
發(fā)表于 2025-3-26 15:29:29 | 只看該作者
30#
發(fā)表于 2025-3-26 18:56:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
茶陵县| 柘城县| 尉氏县| 广元市| 三明市| 盐源县| 虹口区| 惠来县| 定陶县| 黔南| 疏勒县| 通海县| 昌都县| 德兴市| 肥东县| 吉隆县| 广南县| 淄博市| 德庆县| 萝北县| 元氏县| 城市| 平顶山市| 库尔勒市| 莱州市| 郸城县| 沁水县| 巴彦淖尔市| 普宁市| 三门县| 都昌县| 叙永县| 吉隆县| 永康市| 石河子市| 萍乡市| 乐山市| 南溪县| 合作市| 西和县| 通州区|