找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Tori; Christina Birkenhake,Herbert Lange Book 1999 Springer Science+Business Media New York 1999 Abelian variety.Algebra.Cohomolog

[復制鏈接]
樓主: 聯(lián)系
11#
發(fā)表于 2025-3-23 10:52:03 | 只看該作者
Embeddings into Projective Space,the Riemann-Roch Theorem of [CAV], Chapter 3. It goes back to a trick of Wirtinger [Wi]: A suitable change of the complex structure of . defines in a canonical way a line bundle . which is positive definite and satisfies .(.) = .(.). As we learned from R. R. Simha, this approach appears already in t
12#
發(fā)表于 2025-3-23 14:30:08 | 只看該作者
Families of Complex Tori,an anti-involution ’ on End.(.). The skew fields . of finite type over ? with anti-involution ′ were classified by Albert. In this chapter we work out which of these algebras can be realized as endomorphism algebras of nondegenerate complex tori.
13#
發(fā)表于 2025-3-23 21:12:55 | 只看該作者
14#
發(fā)表于 2025-3-24 01:19:47 | 只看該作者
Book 1999A complex torus is a connected compact complex Lie group. Any complex 9 9 torus is of the form X =
15#
發(fā)表于 2025-3-24 05:10:19 | 只看該作者
16#
發(fā)表于 2025-3-24 10:19:59 | 只看該作者
17#
發(fā)表于 2025-3-24 14:07:12 | 只看該作者
18#
發(fā)表于 2025-3-24 15:08:22 | 只看該作者
Complex Tori,. = ?./ Λ with Λ a lattice in ?.. A complex torus is a complex manifold of dimension .. It inherits the structure of a complex Lie group from the vector space ?.. In this chapter we study some properties of complex tori without any additional structure.
19#
發(fā)表于 2025-3-24 20:07:00 | 只看該作者
Intermediate Jacobians, give their definitions, deduce some of their properties and see how they are related. We omit some of their most important aspects, for example the Abel-Jacobi map, which reflects the geometry of the manifold ., since here we are more interested in the complex tori.
20#
發(fā)表于 2025-3-25 00:21:22 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 05:14
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
尼玛县| 铜鼓县| 沅江市| 诸暨市| 乌拉特中旗| 道真| 抚顺县| 尚义县| 镇远县| 芦溪县| 恭城| 台山市| 闵行区| 丰都县| 锦州市| 镇江市| 红安县| 娄烦县| 南昌县| 图木舒克市| 琼海市| 玉龙| 外汇| 金坛市| 凤山县| 兴仁县| 林西县| 灌南县| 尤溪县| 正阳县| 镇远县| 名山县| 略阳县| 赞皇县| 德清县| 赣榆县| 隆林| 乌审旗| 阿拉尔市| 行唐县| 阜新|