找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Tori; Christina Birkenhake,Herbert Lange Book 1999 Springer Science+Business Media New York 1999 Abelian variety.Algebra.Cohomolog

[復(fù)制鏈接]
查看: 14036|回復(fù): 41
樓主
發(fā)表于 2025-3-21 19:35:01 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Complex Tori
編輯Christina Birkenhake,Herbert Lange
視頻videohttp://file.papertrans.cn/232/231600/231600.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Complex Tori;  Christina Birkenhake,Herbert Lange Book 1999 Springer Science+Business Media New York 1999 Abelian variety.Algebra.Cohomolog
描述A complex torus is a connected compact complex Lie group. Any complex 9 9 torus is of the form X =
出版日期Book 1999
關(guān)鍵詞Abelian variety; Algebra; Cohomology; algebraic geometry; complex analysis; homomorphism; manifold; moduli
版次1
doihttps://doi.org/10.1007/978-1-4612-1566-0
isbn_softcover978-1-4612-7195-6
isbn_ebook978-1-4612-1566-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 1999
The information of publication is updating

書目名稱Complex Tori影響因子(影響力)




書目名稱Complex Tori影響因子(影響力)學(xué)科排名




書目名稱Complex Tori網(wǎng)絡(luò)公開度




書目名稱Complex Tori網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Complex Tori被引頻次




書目名稱Complex Tori被引頻次學(xué)科排名




書目名稱Complex Tori年度引用




書目名稱Complex Tori年度引用學(xué)科排名




書目名稱Complex Tori讀者反饋




書目名稱Complex Tori讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:16:17 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:34:01 | 只看該作者
Embeddings into Projective Space,not admit a projective embedding. We will show in this chapter that if (.) is a nondegenerate complex torus of dimension . and index ., then . admits a differentiable embedding into projective space which is holomorphic in . — . variables and antiholomorphic in . variables. For this choose a line bu
地板
發(fā)表于 2025-3-22 07:35:20 | 只看該作者
Intermediate Jacobians, give their definitions, deduce some of their properties and see how they are related. We omit some of their most important aspects, for example the Abel-Jacobi map, which reflects the geometry of the manifold ., since here we are more interested in the complex tori.
5#
發(fā)表于 2025-3-22 12:40:26 | 只看該作者
Families of Complex Tori,Section 1.9) every skew field of finite dimension over ? occurs as the endomorphism algebra of a complex torus. For nondegenerate complex tori the situation is completely different: The existence of a polarization . of index . on . gives strong restrictions for End.(.): The hermitian form . induces
6#
發(fā)表于 2025-3-22 13:44:40 | 只看該作者
The Parameter Spaces of Complex Tori with Endomorphism Structure,cial case of abelian varieties, . is a hermitian symmetric space. To be more precise, there are three series of irreducible hermitian symmetric spaces of the noncompact type CI (the Siegel upper half spaces), AIII, and DIII such that any . is a product of members of these (see [Sh] or [CAV], Chapter
7#
發(fā)表于 2025-3-22 19:29:13 | 只看該作者
8#
發(fā)表于 2025-3-22 21:49:00 | 只看該作者
9#
發(fā)表于 2025-3-23 05:00:03 | 只看該作者
10#
發(fā)表于 2025-3-23 07:20:27 | 只看該作者
Nondegenerate Complex Tori,uch a hermitian form a .. (Note that in [G] . is called a .-convex polarization). If . is a polarization of index . on a complex torus ., we call the pair (., .) a .. In view of the definition of a pseudo-Riemannian manifold [He] one might be tempted to call (., .) a pseudo-abelian or semi-abelian v
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
神农架林区| 安顺市| 四会市| 琼中| 博野县| 武威市| 绿春县| 乌兰浩特市| 锡林郭勒盟| 涪陵区| 枣强县| 新源县| 宜宾县| 莆田市| 体育| 汤阴县| 淳化县| 江油市| 齐齐哈尔市| 连南| 柳河县| 凌云县| 萨嘎县| 德化县| 望城县| 罗山县| 余庆县| 泸溪县| 军事| 西青区| 贵溪市| 福州市| 京山县| 册亨县| 科技| 金阳县| 花莲县| 循化| 蒙自县| 西藏| 双流县|