找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Tori; Christina Birkenhake,Herbert Lange Book 1999 Springer Science+Business Media New York 1999 Abelian variety.Algebra.Cohomolog

[復(fù)制鏈接]
樓主: 聯(lián)系
11#
發(fā)表于 2025-3-23 10:52:03 | 只看該作者
Embeddings into Projective Space,the Riemann-Roch Theorem of [CAV], Chapter 3. It goes back to a trick of Wirtinger [Wi]: A suitable change of the complex structure of . defines in a canonical way a line bundle . which is positive definite and satisfies .(.) = .(.). As we learned from R. R. Simha, this approach appears already in t
12#
發(fā)表于 2025-3-23 14:30:08 | 只看該作者
Families of Complex Tori,an anti-involution ’ on End.(.). The skew fields . of finite type over ? with anti-involution ′ were classified by Albert. In this chapter we work out which of these algebras can be realized as endomorphism algebras of nondegenerate complex tori.
13#
發(fā)表于 2025-3-23 21:12:55 | 只看該作者
14#
發(fā)表于 2025-3-24 01:19:47 | 只看該作者
Book 1999A complex torus is a connected compact complex Lie group. Any complex 9 9 torus is of the form X =
15#
發(fā)表于 2025-3-24 05:10:19 | 只看該作者
16#
發(fā)表于 2025-3-24 10:19:59 | 只看該作者
17#
發(fā)表于 2025-3-24 14:07:12 | 只看該作者
18#
發(fā)表于 2025-3-24 15:08:22 | 只看該作者
Complex Tori,. = ?./ Λ with Λ a lattice in ?.. A complex torus is a complex manifold of dimension .. It inherits the structure of a complex Lie group from the vector space ?.. In this chapter we study some properties of complex tori without any additional structure.
19#
發(fā)表于 2025-3-24 20:07:00 | 只看該作者
Intermediate Jacobians, give their definitions, deduce some of their properties and see how they are related. We omit some of their most important aspects, for example the Abel-Jacobi map, which reflects the geometry of the manifold ., since here we are more interested in the complex tori.
20#
發(fā)表于 2025-3-25 00:21:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太仓市| 盖州市| 阜康市| 康定县| 磐石市| 武平县| 大田县| 封开县| 秦安县| 神农架林区| 兰考县| 滕州市| 浦东新区| 安多县| 利辛县| 城口县| 卓资县| 剑阁县| 泽州县| 丹江口市| 宣武区| 吉安市| 仁怀市| 体育| 阿拉善盟| 旬阳县| 抚宁县| 兴隆县| 岢岚县| 静海县| 达拉特旗| 鸡泽县| 富川| 临夏市| 凭祥市| 原阳县| 威海市| 巴彦淖尔市| 若羌县| 白水县| 凌云县|