找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomology of Number Fields; Jürgen Neukirch,Alexander Schmidt,Kay Wingberg Book 2008Latest edition The Editor(s) (if applicable) and The

[復制鏈接]
樓主: Hypothesis
11#
發(fā)表于 2025-3-23 11:44:56 | 只看該作者
The Absolute Galois Group of a Global Fieldfew conceptual results. For example, there is a famous conjecture due to . which asserts that the subgroup .. of .. is a free profinite group, where .(.) is the field obtained from . by adjoining all roots of unity. This was proved by . [171] for function fields, but the conjecture is open in the number field case.
12#
發(fā)表于 2025-3-23 14:05:35 | 只看該作者
13#
發(fā)表于 2025-3-23 20:17:54 | 只看該作者
Iwasawa Theory of Number Fieldsoring with ., one obtains a .-vector space of dimension 2., where . is the genus of .. The characteristic polynomial with respect to the endomorphism .. is the essential part of the .-function of the curve ..
14#
發(fā)表于 2025-3-24 01:25:55 | 只看該作者
15#
發(fā)表于 2025-3-24 04:56:03 | 只看該作者
16#
發(fā)表于 2025-3-24 06:34:41 | 只看該作者
17#
發(fā)表于 2025-3-24 12:06:04 | 只看該作者
18#
發(fā)表于 2025-3-24 17:17:07 | 只看該作者
Justin Wong MD, FRCPC,Anand Kumar MD, FRCPCThe Iwasawa algebra, usually denoted by the Greek letter Λ, is the complete group algebra . of a group Γ, which is . isomorphic to .. This means that we will not specify a particular isomorphism . or, equivalently, we will not fix a topological generator . of the procyclic group Γ.
19#
發(fā)表于 2025-3-24 20:52:03 | 只看該作者
Ian Nesbitt MBBS(Hons), FRCA, DICM(UK)Having established the cohomology theory for local fields, we now begin its development for global fields, i.e. algebraic number fields and function fields in one variable over a finite field. The cohomology theory treats both types of fields equally.
20#
發(fā)表于 2025-3-25 02:25:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
黔西| 罗江县| 浦东新区| 嘉定区| 临潭县| 城口县| 北辰区| 类乌齐县| 凭祥市| 巫溪县| 赤城县| 宁阳县| 郸城县| 岳阳市| 云浮市| 盐源县| 贡觉县| 余干县| 柳州市| 崇信县| 宝应县| 平远县| 华亭县| 天祝| 盘锦市| 济南市| 武宣县| 慈利县| 枣阳市| 永德县| 兴海县| 策勒县| 五大连池市| 正定县| 重庆市| 阳曲县| 璧山县| 钟山县| 洛川县| 荆门市| 会东县|