找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomology of Number Fields; Jürgen Neukirch,Alexander Schmidt,Kay Wingberg Book 2008Latest edition The Editor(s) (if applicable) and The

[復(fù)制鏈接]
查看: 6769|回復(fù): 49
樓主
發(fā)表于 2025-3-21 19:22:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Cohomology of Number Fields
編輯Jürgen Neukirch,Alexander Schmidt,Kay Wingberg
視頻videohttp://file.papertrans.cn/230/229265/229265.mp4
概述In the words of a reviewer: “This monograph gives a very complete treatment of a vast array of central topics in algebraic number theory.There is so much material written down systematically which was
叢書(shū)名稱(chēng)Grundlehren der mathematischen Wissenschaften
圖書(shū)封面Titlebook: Cohomology of Number Fields;  Jürgen Neukirch,Alexander Schmidt,Kay Wingberg Book 2008Latest edition The Editor(s) (if applicable) and The
出版日期Book 2008Latest edition
關(guān)鍵詞Galois group; Galois groups; algebra; algebraic number field; algebraic number fields; algebraic number t
版次2
doihttps://doi.org/10.1007/978-3-540-37889-1
isbn_softcover978-3-662-51745-1
isbn_ebook978-3-540-37889-1Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightThe Editor(s) (if applicable) and The Author(s) 2008
The information of publication is updating

書(shū)目名稱(chēng)Cohomology of Number Fields影響因子(影響力)




書(shū)目名稱(chēng)Cohomology of Number Fields影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Cohomology of Number Fields網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Cohomology of Number Fields網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Cohomology of Number Fields被引頻次




書(shū)目名稱(chēng)Cohomology of Number Fields被引頻次學(xué)科排名




書(shū)目名稱(chēng)Cohomology of Number Fields年度引用




書(shū)目名稱(chēng)Cohomology of Number Fields年度引用學(xué)科排名




書(shū)目名稱(chēng)Cohomology of Number Fields讀者反饋




書(shū)目名稱(chēng)Cohomology of Number Fields讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:33:23 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:34:37 | 只看該作者
地板
發(fā)表于 2025-3-22 07:54:28 | 只看該作者
Cohomology of Local Fieldst to a discrete valuation and has a finite residue field. This covers two cases, namely .-., i.e. finite extensions of . for some prime number ., and .. in one variable over a finite field. For the basic properties of local fields we refer to [160], chapters II and V. As always, . denotes a separabl
5#
發(fā)表于 2025-3-22 09:06:59 | 只看該作者
6#
發(fā)表于 2025-3-22 15:22:29 | 只看該作者
Iwasawa Theory of Number Fieldse variable over a finite field. This analogy should also extend to the theory of .-functions and .-functions of global fields. If, for a function field ., one considers the corresponding smooth and proper curve ., where . is the field of constants of ., then the .-function of the curve . is a ration
7#
發(fā)表于 2025-3-22 19:03:38 | 只看該作者
8#
發(fā)表于 2025-3-22 22:26:44 | 只看該作者
9#
發(fā)表于 2025-3-23 05:04:54 | 只看該作者
Mechanisms of Innate Immunity in Sepsis,few conceptual results. For example, there is a famous conjecture due to . which asserts that the subgroup .. of .. is a free profinite group, where .(.) is the field obtained from . by adjoining all roots of unity. This was proved by . [171] for function fields, but the conjecture is open in the number field case.
10#
發(fā)表于 2025-3-23 07:39:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
顺义区| 萍乡市| 买车| 六枝特区| 永善县| 苗栗县| 佳木斯市| 三原县| 宝应县| 比如县| 池州市| 墨脱县| 涟水县| 道孚县| 房产| 大城县| 吉水县| 梁平县| 镇巴县| 承德县| 宜黄县| 东平县| 花莲县| 定兴县| 克什克腾旗| 罗江县| 固原市| 涿鹿县| 安新县| 双江| 斗六市| 长武县| 吴堡县| 天全县| 苍溪县| 新化县| 桃源县| 武川县| 河北区| 阿克陶县| 英超|