找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomology of Number Fields; Jürgen Neukirch,Alexander Schmidt,Kay Wingberg Book 2008Latest edition The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: Hypothesis
11#
發(fā)表于 2025-3-23 11:44:56 | 只看該作者
The Absolute Galois Group of a Global Fieldfew conceptual results. For example, there is a famous conjecture due to . which asserts that the subgroup .. of .. is a free profinite group, where .(.) is the field obtained from . by adjoining all roots of unity. This was proved by . [171] for function fields, but the conjecture is open in the number field case.
12#
發(fā)表于 2025-3-23 14:05:35 | 只看該作者
13#
發(fā)表于 2025-3-23 20:17:54 | 只看該作者
Iwasawa Theory of Number Fieldsoring with ., one obtains a .-vector space of dimension 2., where . is the genus of .. The characteristic polynomial with respect to the endomorphism .. is the essential part of the .-function of the curve ..
14#
發(fā)表于 2025-3-24 01:25:55 | 只看該作者
15#
發(fā)表于 2025-3-24 04:56:03 | 只看該作者
16#
發(fā)表于 2025-3-24 06:34:41 | 只看該作者
17#
發(fā)表于 2025-3-24 12:06:04 | 只看該作者
18#
發(fā)表于 2025-3-24 17:17:07 | 只看該作者
Justin Wong MD, FRCPC,Anand Kumar MD, FRCPCThe Iwasawa algebra, usually denoted by the Greek letter Λ, is the complete group algebra . of a group Γ, which is . isomorphic to .. This means that we will not specify a particular isomorphism . or, equivalently, we will not fix a topological generator . of the procyclic group Γ.
19#
發(fā)表于 2025-3-24 20:52:03 | 只看該作者
Ian Nesbitt MBBS(Hons), FRCA, DICM(UK)Having established the cohomology theory for local fields, we now begin its development for global fields, i.e. algebraic number fields and function fields in one variable over a finite field. The cohomology theory treats both types of fields equally.
20#
發(fā)表于 2025-3-25 02:25:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
军事| 绥化市| 汉沽区| 汉阴县| 湘潭市| 泽州县| 孟村| 孝感市| 华蓥市| 延川县| 临汾市| 临海市| 深圳市| 巫溪县| 宜君县| 巴塘县| 南通市| 尚志市| 乐东| 江达县| 姚安县| 汤阴县| 永新县| 宁武县| 崇仁县| 三穗县| 芜湖市| 汉阴县| 榆树市| 来宾市| 长海县| 南岸区| 宁城县| 临桂县| 塘沽区| 定南县| 永德县| 澄江县| 达拉特旗| 临武县| 阳新县|