找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomology of Number Fields; Jürgen Neukirch,Alexander Schmidt,Kay Wingberg Book 2008Latest edition The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: Hypothesis
11#
發(fā)表于 2025-3-23 11:44:56 | 只看該作者
The Absolute Galois Group of a Global Fieldfew conceptual results. For example, there is a famous conjecture due to . which asserts that the subgroup .. of .. is a free profinite group, where .(.) is the field obtained from . by adjoining all roots of unity. This was proved by . [171] for function fields, but the conjecture is open in the number field case.
12#
發(fā)表于 2025-3-23 14:05:35 | 只看該作者
13#
發(fā)表于 2025-3-23 20:17:54 | 只看該作者
Iwasawa Theory of Number Fieldsoring with ., one obtains a .-vector space of dimension 2., where . is the genus of .. The characteristic polynomial with respect to the endomorphism .. is the essential part of the .-function of the curve ..
14#
發(fā)表于 2025-3-24 01:25:55 | 只看該作者
15#
發(fā)表于 2025-3-24 04:56:03 | 只看該作者
16#
發(fā)表于 2025-3-24 06:34:41 | 只看該作者
17#
發(fā)表于 2025-3-24 12:06:04 | 只看該作者
18#
發(fā)表于 2025-3-24 17:17:07 | 只看該作者
Justin Wong MD, FRCPC,Anand Kumar MD, FRCPCThe Iwasawa algebra, usually denoted by the Greek letter Λ, is the complete group algebra . of a group Γ, which is . isomorphic to .. This means that we will not specify a particular isomorphism . or, equivalently, we will not fix a topological generator . of the procyclic group Γ.
19#
發(fā)表于 2025-3-24 20:52:03 | 只看該作者
Ian Nesbitt MBBS(Hons), FRCA, DICM(UK)Having established the cohomology theory for local fields, we now begin its development for global fields, i.e. algebraic number fields and function fields in one variable over a finite field. The cohomology theory treats both types of fields equally.
20#
發(fā)表于 2025-3-25 02:25:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岱山县| 江陵县| 和田市| 枣强县| 阿巴嘎旗| 鄱阳县| 上虞市| 瑞昌市| 南召县| 民权县| 澄江县| 昔阳县| 永福县| 阿拉尔市| 海晏县| 积石山| 临夏县| 廉江市| 榆社县| 锡林郭勒盟| 吴江市| 广州市| 耒阳市| 衡东县| 余姚市| 确山县| 诸暨市| 稷山县| 嘉黎县| 雅安市| 滨州市| 工布江达县| 金寨县| 启东市| 丁青县| 柳河县| 昔阳县| 保康县| 姚安县| 昌图县| 迭部县|