找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomology of Number Fields; Jürgen Neukirch,Alexander Schmidt,Kay Wingberg Book 2008Latest edition The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: Hypothesis
21#
發(fā)表于 2025-3-25 06:57:45 | 只看該作者
Cohomology of Profinite GroupsProfinite groups are topological groups which naturally occur in algebraic number theory as Galois groups of infinite field extensions or more generally as étale fundamental groups of schemes. Their cohomology groups often contain important arithmetic information.
22#
發(fā)表于 2025-3-25 09:20:45 | 只看該作者
23#
發(fā)表于 2025-3-25 12:52:51 | 只看該作者
Iwasawa ModulesThe Iwasawa algebra, usually denoted by the Greek letter Λ, is the complete group algebra . of a group Γ, which is . isomorphic to .. This means that we will not specify a particular isomorphism . or, equivalently, we will not fix a topological generator . of the procyclic group Γ.
24#
發(fā)表于 2025-3-25 19:06:27 | 只看該作者
Cohomology of Global FieldsHaving established the cohomology theory for local fields, we now begin its development for global fields, i.e. algebraic number fields and function fields in one variable over a finite field. The cohomology theory treats both types of fields equally.
25#
發(fā)表于 2025-3-25 23:03:56 | 只看該作者
26#
發(fā)表于 2025-3-26 03:22:19 | 只看該作者
https://doi.org/10.1007/978-3-540-37889-1Galois group; Galois groups; algebra; algebraic number field; algebraic number fields; algebraic number t
27#
發(fā)表于 2025-3-26 05:35:14 | 只看該作者
28#
發(fā)表于 2025-3-26 08:53:26 | 只看該作者
29#
發(fā)表于 2025-3-26 13:09:12 | 只看該作者
A Current View of Oxygen Supply Dependencyalled . (to 1) if every open subgroup . of . contains the images ..(..) for almost all ., i.e. all but a finite number. The free products of pro-.-groups are defined by the following universal property.
30#
發(fā)表于 2025-3-26 19:38:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
繁峙县| 上蔡县| 友谊县| 安远县| 兰考县| 内乡县| 桓仁| 阿巴嘎旗| 凉山| 成安县| 五台县| 科技| 高要市| 绥中县| 民和| 伊宁县| 华宁县| 夏津县| 马公市| 胶南市| 房山区| 麻城市| 乌兰县| 滁州市| 灵武市| 乐东| 大丰市| 洛南县| 沁源县| 大余县| 麟游县| 铜陵市| 贺州市| 壤塘县| 高要市| 广昌县| 济源市| 台州市| 绍兴县| 双流县| 康马县|