找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomological Theory of Dynamical Zeta Functions; Andreas Juhl Book 2001 Birkh?user Verlag 2001 Globale Analysis.differential equation.dyn

[復(fù)制鏈接]
查看: 20160|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:34:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Cohomological Theory of Dynamical Zeta Functions
編輯Andreas Juhl
視頻videohttp://file.papertrans.cn/230/229246/229246.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Cohomological Theory of Dynamical Zeta Functions;  Andreas Juhl Book 2001 Birkh?user Verlag 2001 Globale Analysis.differential equation.dyn
描述Dynamical zeta functions are associated to dynamical systems with a countable set of periodic orbits. The dynamical zeta functions of the geodesic flow of lo- cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and were suggested by an analogy between Weil‘s explicit formula for the Riemann zeta function and Selberg‘s trace formula ([261]). The purpose of the cohomological theory is to understand the analytical properties of the zeta functions on the basis of suitable analogs of the Lefschetz fixed point formula in which periodic orbits of the geodesic flow take the place of fixed points. This approach is parallel to Weil‘s idea to analyze the zeta functions of pro- jective algebraic varieties over finite fields on the basis of suitable versions of the Lefschetz fixed point formula. The Lefschetz formula formalism shows that the divisors of the rational Hassc-Wcil zeta functions are determined by the spectra of Frobenius operators on l-adic cohomology.
出版日期Book 2001
關(guān)鍵詞Globale Analysis; differential equation; dynamische Systeme; harmonic analysis; measure
版次1
doihttps://doi.org/10.1007/978-3-0348-8340-5
isbn_softcover978-3-0348-9524-8
isbn_ebook978-3-0348-8340-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Verlag 2001
The information of publication is updating

書目名稱Cohomological Theory of Dynamical Zeta Functions影響因子(影響力)




書目名稱Cohomological Theory of Dynamical Zeta Functions影響因子(影響力)學(xué)科排名




書目名稱Cohomological Theory of Dynamical Zeta Functions網(wǎng)絡(luò)公開度




書目名稱Cohomological Theory of Dynamical Zeta Functions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Cohomological Theory of Dynamical Zeta Functions被引頻次




書目名稱Cohomological Theory of Dynamical Zeta Functions被引頻次學(xué)科排名




書目名稱Cohomological Theory of Dynamical Zeta Functions年度引用




書目名稱Cohomological Theory of Dynamical Zeta Functions年度引用學(xué)科排名




書目名稱Cohomological Theory of Dynamical Zeta Functions讀者反饋




書目名稱Cohomological Theory of Dynamical Zeta Functions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:42:06 | 只看該作者
The Verma Complexes on , and ,, complexes for A E -No to some Zelobenko complexes on Sn.. The analogous results for complexes of currents are used in the last section to prove Theorem 1.4. The convention introduced at the end of Chapter 4 is assumed to be in force throughout.
板凳
發(fā)表于 2025-3-22 03:48:20 | 只看該作者
地板
發(fā)表于 2025-3-22 05:18:08 | 只看該作者
5#
發(fā)表于 2025-3-22 09:54:45 | 只看該作者
6#
發(fā)表于 2025-3-22 14:50:16 | 只看該作者
Harmonic Currents and Canonical Complexes, such that where H. is the orthogonal projection onto the harmonic p-forms (see [65], [301]). The latter identity implies the decompositionfor . E 1P (M), and if we assume as above that w is a finite sum of eigenforms for the first . eigenvalues then we obtain the formula
7#
發(fā)表于 2025-3-22 17:41:38 | 只看該作者
Book 2001w of lo- cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and were sugges
8#
發(fā)表于 2025-3-22 22:22:31 | 只看該作者
0743-1643 odesic flow of lo- cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and w
9#
發(fā)表于 2025-3-23 03:29:29 | 只看該作者
10#
發(fā)表于 2025-3-23 08:52:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 14:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰兴市| 上杭县| 新丰县| 铁岭县| 定安县| 清镇市| 祁连县| 富平县| 长寿区| 漳州市| 富宁县| 通河县| 乌兰察布市| 板桥市| 泰州市| 星子县| 万山特区| 巴林左旗| 呼玛县| 十堰市| 登封市| 德保县| 崇仁县| 内江市| 新晃| 方城县| 十堰市| 石阡县| 靖远县| 永泰县| 修文县| 彭山县| 秦安县| 肥城市| 松溪县| 六枝特区| 慈溪市| 当雄县| 长葛市| 金昌市| 凉山|