找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomological Theory of Dynamical Zeta Functions; Andreas Juhl Book 2001 Birkh?user Verlag 2001 Globale Analysis.differential equation.dyn

[復(fù)制鏈接]
樓主: 獨裁者
11#
發(fā)表于 2025-3-23 09:56:48 | 只看該作者
12#
發(fā)表于 2025-3-23 16:24:14 | 只看該作者
Divisors and Harmonic Currents,f the Ruelle zeta function . of the geodesic flow of a compact hyperbolic 4-manifold . in terms of harmonic currents on . The appropriate notion of harmonicity involves additional conditions along the leaves of P.
13#
發(fā)表于 2025-3-23 21:17:13 | 只看該作者
https://doi.org/10.1007/978-3-0348-8340-5Globale Analysis; differential equation; dynamische Systeme; harmonic analysis; measure
14#
發(fā)表于 2025-3-23 23:30:20 | 只看該作者
978-3-0348-9524-8Birkh?user Verlag 2001
15#
發(fā)表于 2025-3-24 02:54:35 | 只看該作者
https://doi.org/10.1007/978-1-4614-5511-0e (twisted) geodesic flows. The main motivation of the constructions discussed here is to find suitable frameworks for characterization of the divisors of the zeta functions..in terms of currents on.which are specified by.with respect to the foliations P.. Although we shall prove in Chapter 5 and Ch
16#
發(fā)表于 2025-3-24 07:17:19 | 只看該作者
17#
發(fā)表于 2025-3-24 11:41:53 | 只看該作者
18#
發(fā)表于 2025-3-24 17:44:55 | 只看該作者
https://doi.org/10.1007/978-1-4614-5511-0divisor of the Selberg zeta function of the a-twisted geodesic flow proved in Chapter 3 Section 3.3 is related to its characterizations in terms of a-twisted harmonic currents on . In the third section we prove some results on a-twisted globally harmonic currents which are . along the leaves of 0..
19#
發(fā)表于 2025-3-24 20:49:17 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/c/image/229246.jpg
20#
發(fā)表于 2025-3-25 01:41:26 | 只看該作者
Statistics for Industry and TechnologyIn this chapter we discuss the motivations of the cohomological theory of the zeta functions and review the contents of the book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 18:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万山特区| 高州市| 剑河县| 咸阳市| 柞水县| 乳山市| 宁明县| 沙坪坝区| 遂宁市| 辽阳县| 三河市| 安新县| 兴业县| 东山县| 平湖市| 庆云县| 山东省| 海盐县| 香港| 南投县| 中宁县| 永新县| 民丰县| 木兰县| 民丰县| 靖远县| 田东县| 宜兰县| 滁州市| 大邑县| 民丰县| 祁连县| 邳州市| 郧西县| 安宁市| 那坡县| 湖南省| 楚雄市| 东方市| 桓台县| 平顺县|