找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomological Theory of Dynamical Zeta Functions; Andreas Juhl Book 2001 Birkh?user Verlag 2001 Globale Analysis.differential equation.dyn

[復(fù)制鏈接]
樓主: 獨裁者
11#
發(fā)表于 2025-3-23 09:56:48 | 只看該作者
12#
發(fā)表于 2025-3-23 16:24:14 | 只看該作者
Divisors and Harmonic Currents,f the Ruelle zeta function . of the geodesic flow of a compact hyperbolic 4-manifold . in terms of harmonic currents on . The appropriate notion of harmonicity involves additional conditions along the leaves of P.
13#
發(fā)表于 2025-3-23 21:17:13 | 只看該作者
https://doi.org/10.1007/978-3-0348-8340-5Globale Analysis; differential equation; dynamische Systeme; harmonic analysis; measure
14#
發(fā)表于 2025-3-23 23:30:20 | 只看該作者
978-3-0348-9524-8Birkh?user Verlag 2001
15#
發(fā)表于 2025-3-24 02:54:35 | 只看該作者
https://doi.org/10.1007/978-1-4614-5511-0e (twisted) geodesic flows. The main motivation of the constructions discussed here is to find suitable frameworks for characterization of the divisors of the zeta functions..in terms of currents on.which are specified by.with respect to the foliations P.. Although we shall prove in Chapter 5 and Ch
16#
發(fā)表于 2025-3-24 07:17:19 | 只看該作者
17#
發(fā)表于 2025-3-24 11:41:53 | 只看該作者
18#
發(fā)表于 2025-3-24 17:44:55 | 只看該作者
https://doi.org/10.1007/978-1-4614-5511-0divisor of the Selberg zeta function of the a-twisted geodesic flow proved in Chapter 3 Section 3.3 is related to its characterizations in terms of a-twisted harmonic currents on . In the third section we prove some results on a-twisted globally harmonic currents which are . along the leaves of 0..
19#
發(fā)表于 2025-3-24 20:49:17 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/c/image/229246.jpg
20#
發(fā)表于 2025-3-25 01:41:26 | 只看該作者
Statistics for Industry and TechnologyIn this chapter we discuss the motivations of the cohomological theory of the zeta functions and review the contents of the book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 18:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白河县| 鄂尔多斯市| 赣州市| 高青县| 闽侯县| 泽库县| 班戈县| 易门县| 神农架林区| 淳化县| 固始县| 高青县| 北辰区| 竹山县| 张家界市| 海淀区| 梁平县| 新宾| 惠州市| 句容市| 林西县| 桂阳县| 渝中区| 乐山市| 电白县| 松滋市| 临沭县| 韶关市| 延庆县| 江西省| 岳阳县| 东丰县| 绵阳市| 利津县| 嘉峪关市| 金乡县| 金阳县| 桃源县| 曲水县| 蒙城县| 蓝山县|