找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomological Theory of Dynamical Zeta Functions; Andreas Juhl Book 2001 Birkh?user Verlag 2001 Globale Analysis.differential equation.dyn

[復(fù)制鏈接]
查看: 20161|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:34:12 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Cohomological Theory of Dynamical Zeta Functions
編輯Andreas Juhl
視頻videohttp://file.papertrans.cn/230/229246/229246.mp4
叢書(shū)名稱(chēng)Progress in Mathematics
圖書(shū)封面Titlebook: Cohomological Theory of Dynamical Zeta Functions;  Andreas Juhl Book 2001 Birkh?user Verlag 2001 Globale Analysis.differential equation.dyn
描述Dynamical zeta functions are associated to dynamical systems with a countable set of periodic orbits. The dynamical zeta functions of the geodesic flow of lo- cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and were suggested by an analogy between Weil‘s explicit formula for the Riemann zeta function and Selberg‘s trace formula ([261]). The purpose of the cohomological theory is to understand the analytical properties of the zeta functions on the basis of suitable analogs of the Lefschetz fixed point formula in which periodic orbits of the geodesic flow take the place of fixed points. This approach is parallel to Weil‘s idea to analyze the zeta functions of pro- jective algebraic varieties over finite fields on the basis of suitable versions of the Lefschetz fixed point formula. The Lefschetz formula formalism shows that the divisors of the rational Hassc-Wcil zeta functions are determined by the spectra of Frobenius operators on l-adic cohomology.
出版日期Book 2001
關(guān)鍵詞Globale Analysis; differential equation; dynamische Systeme; harmonic analysis; measure
版次1
doihttps://doi.org/10.1007/978-3-0348-8340-5
isbn_softcover978-3-0348-9524-8
isbn_ebook978-3-0348-8340-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Verlag 2001
The information of publication is updating

書(shū)目名稱(chēng)Cohomological Theory of Dynamical Zeta Functions影響因子(影響力)




書(shū)目名稱(chēng)Cohomological Theory of Dynamical Zeta Functions影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Cohomological Theory of Dynamical Zeta Functions網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Cohomological Theory of Dynamical Zeta Functions網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Cohomological Theory of Dynamical Zeta Functions被引頻次




書(shū)目名稱(chēng)Cohomological Theory of Dynamical Zeta Functions被引頻次學(xué)科排名




書(shū)目名稱(chēng)Cohomological Theory of Dynamical Zeta Functions年度引用




書(shū)目名稱(chēng)Cohomological Theory of Dynamical Zeta Functions年度引用學(xué)科排名




書(shū)目名稱(chēng)Cohomological Theory of Dynamical Zeta Functions讀者反饋




書(shū)目名稱(chēng)Cohomological Theory of Dynamical Zeta Functions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:42:06 | 只看該作者
The Verma Complexes on , and ,, complexes for A E -No to some Zelobenko complexes on Sn.. The analogous results for complexes of currents are used in the last section to prove Theorem 1.4. The convention introduced at the end of Chapter 4 is assumed to be in force throughout.
板凳
發(fā)表于 2025-3-22 03:48:20 | 只看該作者
地板
發(fā)表于 2025-3-22 05:18:08 | 只看該作者
5#
發(fā)表于 2025-3-22 09:54:45 | 只看該作者
6#
發(fā)表于 2025-3-22 14:50:16 | 只看該作者
Harmonic Currents and Canonical Complexes, such that where H. is the orthogonal projection onto the harmonic p-forms (see [65], [301]). The latter identity implies the decompositionfor . E 1P (M), and if we assume as above that w is a finite sum of eigenforms for the first . eigenvalues then we obtain the formula
7#
發(fā)表于 2025-3-22 17:41:38 | 只看該作者
Book 2001w of lo- cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and were sugges
8#
發(fā)表于 2025-3-22 22:22:31 | 只看該作者
0743-1643 odesic flow of lo- cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and w
9#
發(fā)表于 2025-3-23 03:29:29 | 只看該作者
10#
發(fā)表于 2025-3-23 08:52:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 18:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀远县| 大庆市| 梁山县| 扬州市| 延津县| 调兵山市| 贺州市| 松原市| 陆河县| 桐庐县| 南召县| 九寨沟县| 昆山市| 深泽县| 安远县| 芜湖县| 镇坪县| 九寨沟县| 龙游县| 偏关县| 河曲县| 榆林市| 自治县| 彭山县| 紫金县| 柳林县| 湾仔区| 太保市| 丘北县| 昌乐县| 临江市| 游戏| 那坡县| 清苑县| 广南县| 朔州市| 察雅县| 吴江市| 资兴市| 苏尼特左旗| 合肥市|