找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras; Geometric Modelling Daniel Klawitter Book 2015 Springer Fachmedien Wiesbaden 2015 Cayley-Klein geometries.Clifford alge

[復(fù)制鏈接]
查看: 6391|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:42:47 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Clifford Algebras
副標(biāo)題Geometric Modelling
編輯Daniel Klawitter
視頻videohttp://file.papertrans.cn/228/227344/227344.mp4
概述Publication in the field of mathematical science.Includes supplementary material:
圖書封面Titlebook: Clifford Algebras; Geometric Modelling  Daniel Klawitter Book 2015 Springer Fachmedien Wiesbaden 2015 Cayley-Klein geometries.Clifford alge
描述After revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this theory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework.
出版日期Book 2015
關(guān)鍵詞Cayley-Klein geometries; Clifford algebra model; Euclidean displacements; Euclidean geometry; hyperquadr
版次1
doihttps://doi.org/10.1007/978-3-658-07618-4
isbn_softcover978-3-658-07617-7
isbn_ebook978-3-658-07618-4
copyrightSpringer Fachmedien Wiesbaden 2015
The information of publication is updating

書目名稱Clifford Algebras影響因子(影響力)




書目名稱Clifford Algebras影響因子(影響力)學(xué)科排名




書目名稱Clifford Algebras網(wǎng)絡(luò)公開度




書目名稱Clifford Algebras網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Clifford Algebras被引頻次




書目名稱Clifford Algebras被引頻次學(xué)科排名




書目名稱Clifford Algebras年度引用




書目名稱Clifford Algebras年度引用學(xué)科排名




書目名稱Clifford Algebras讀者反饋




書目名稱Clifford Algebras讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:55:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:25:45 | 只看該作者
Kinematic Mappings for Spin Groups, construction is accomplished in detail for the threedimensional Euclidean space. Furthermore, the kinematic mapping of Study and the mapping of Blaschke and Grünwald are constructed in a unified method. Matrices of the collineations in the image and pre-image space are derived. The construction is
地板
發(fā)表于 2025-3-22 06:52:40 | 只看該作者
5#
發(fā)表于 2025-3-22 10:51:13 | 只看該作者
http://image.papertrans.cn/c/image/227344.jpg
6#
發(fā)表于 2025-3-22 16:57:08 | 只看該作者
Chain Geometry over Clifford Algebras,introduce the concepts we need for our purposes. For a more detailed introduction the reader is referred to [11]. The roots of chain geometry can be found in B. [5]. B. investigated projective lines over commutative two-dimensional algebras and the corresponding chain geometries. A more recent treatise is [33].
7#
發(fā)表于 2025-3-22 19:46:03 | 只看該作者
8#
發(fā)表于 2025-3-22 22:50:33 | 只看該作者
Responses to Nazism in Britain, 1933-1939introduce the concepts we need for our purposes. For a more detailed introduction the reader is referred to [11]. The roots of chain geometry can be found in B. [5]. B. investigated projective lines over commutative two-dimensional algebras and the corresponding chain geometries. A more recent treat
9#
發(fā)表于 2025-3-23 03:55:41 | 只看該作者
The Reasons of the Intellectuals construction is accomplished in detail for the threedimensional Euclidean space. Furthermore, the kinematic mapping of Study and the mapping of Blaschke and Grünwald are constructed in a unified method. Matrices of the collineations in the image and pre-image space are derived. The construction is
10#
發(fā)表于 2025-3-23 08:09:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 20:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
樟树市| 乐山市| 鹤山市| 安塞县| 太白县| 临颍县| 泾源县| 佛坪县| 增城市| 枣阳市| 东丰县| 滁州市| 嘉祥县| 平定县| 扎囊县| 延寿县| 高邑县| 革吉县| 满城县| 宜宾市| 丰城市| 镇安县| 上饶市| 谢通门县| 郎溪县| 磐石市| 吉隆县| 手游| 雷州市| 清水县| 茌平县| 敖汉旗| 西林县| 本溪| 宜城市| 遵义县| 大田县| 古浪县| 息烽县| 台安县| 北流市|