找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras; Geometric Modelling Daniel Klawitter Book 2015 Springer Fachmedien Wiesbaden 2015 Cayley-Klein geometries.Clifford alge

[復制鏈接]
樓主: 公款
11#
發(fā)表于 2025-3-23 10:15:14 | 只看該作者
12#
發(fā)表于 2025-3-23 14:05:10 | 只看該作者
978-3-658-07617-7Springer Fachmedien Wiesbaden 2015
13#
發(fā)表于 2025-3-23 19:39:46 | 只看該作者
dean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries o
14#
發(fā)表于 2025-3-23 22:22:15 | 只看該作者
15#
發(fā)表于 2025-3-24 05:17:13 | 只看該作者
16#
發(fā)表于 2025-3-24 07:50:40 | 只看該作者
17#
發(fā)表于 2025-3-24 10:52:17 | 只看該作者
Book 2015eory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework.
18#
發(fā)表于 2025-3-24 17:31:13 | 只看該作者
Book 2015s. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this th
19#
發(fā)表于 2025-3-24 21:49:23 | 只看該作者
The Reasons of the Intellectualsaccomplished in detail for the Euclidean spaces of dimension two and three. After that, we give an overview of possible kinematic mappings for Cayley-Klein spaces of dimension two and three. Moreover, the mapping for the four-dimensional Euclidean space is presented. This chapter is already published, see [41].
20#
發(fā)表于 2025-3-25 00:13:04 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-2-1 13:13
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
兴城市| 邢台县| 颍上县| 丽水市| 丹棱县| 轮台县| 墨江| 武冈市| 祥云县| 青浦区| 南靖县| 陈巴尔虎旗| 胶南市| 洛宁县| 怀仁县| 牙克石市| 新巴尔虎右旗| 曲麻莱县| 迭部县| 英山县| 新河县| 平果县| 金昌市| 承德县| 湘阴县| 德格县| 石林| 马公市| 株洲县| 遵义县| 北辰区| 浦江县| 临湘市| 百色市| 巫溪县| 黄龙县| 天镇县| 儋州市| 青海省| 固原市| 漠河县|