找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras; Geometric Modelling Daniel Klawitter Book 2015 Springer Fachmedien Wiesbaden 2015 Cayley-Klein geometries.Clifford alge

[復(fù)制鏈接]
樓主: 公款
11#
發(fā)表于 2025-3-23 10:15:14 | 只看該作者
12#
發(fā)表于 2025-3-23 14:05:10 | 只看該作者
978-3-658-07617-7Springer Fachmedien Wiesbaden 2015
13#
發(fā)表于 2025-3-23 19:39:46 | 只看該作者
dean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries o
14#
發(fā)表于 2025-3-23 22:22:15 | 只看該作者
15#
發(fā)表于 2025-3-24 05:17:13 | 只看該作者
16#
發(fā)表于 2025-3-24 07:50:40 | 只看該作者
17#
發(fā)表于 2025-3-24 10:52:17 | 只看該作者
Book 2015eory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework.
18#
發(fā)表于 2025-3-24 17:31:13 | 只看該作者
Book 2015s. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this th
19#
發(fā)表于 2025-3-24 21:49:23 | 只看該作者
The Reasons of the Intellectualsaccomplished in detail for the Euclidean spaces of dimension two and three. After that, we give an overview of possible kinematic mappings for Cayley-Klein spaces of dimension two and three. Moreover, the mapping for the four-dimensional Euclidean space is presented. This chapter is already published, see [41].
20#
發(fā)表于 2025-3-25 00:13:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-1 13:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深水埗区| 巫溪县| 罗山县| 班玛县| 昌宁县| 开江县| 临颍县| 满洲里市| 胶南市| 辽阳市| 湄潭县| 西华县| 新邵县| 五河县| 隆林| 辽宁省| 嘉义市| 曲周县| 淮滨县| 堆龙德庆县| 河源市| 和田市| 军事| 名山县| 盐津县| 武威市| 塘沽区| 桂东县| 卫辉市| 青铜峡市| 柳州市| 长岛县| 甘肃省| 方山县| 临湘市| 老河口市| 镇巴县| 平罗县| 石家庄市| 横峰县| 嘉鱼县|