找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Quantum Dynamics; From Classical Paths Walter Dittrich,Martin Reuter Textbook 20013rd edition Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
樓主: Corticosteroids
41#
發(fā)表于 2025-3-28 17:10:03 | 只看該作者
42#
發(fā)表于 2025-3-28 22:29:33 | 只看該作者
The Adiabatic Invariance of the Action Variables,We shall first use an example to explain the concept of adiabatic invariance. Let us consider a “super ball” of mass ., which bounces back and forth between two walls (distance .) with velocity ... Let gravitation be neglected, and the collisions with the walls be elastic. If .. denotes the average force onto each wall, then we have
43#
發(fā)表于 2025-3-29 02:50:24 | 只看該作者
44#
發(fā)表于 2025-3-29 03:23:19 | 只看該作者
45#
發(fā)表于 2025-3-29 09:02:16 | 只看該作者
Superconvergent Perturbation Theory, KAM Theorem (Introduction),Here we are dealing with an especially fast converging perturbation series, which is of particular importance for the proof of the KAM theorem (cf. below).
46#
發(fā)表于 2025-3-29 12:11:48 | 只看該作者
47#
發(fā)表于 2025-3-29 17:32:52 | 只看該作者
Examples for Calculating Path Integrals,We now want to compute the kernel .) for a few simple Lagrangians. We have already found for the one-dimensional case that . with
48#
發(fā)表于 2025-3-29 22:43:24 | 只看該作者
49#
發(fā)表于 2025-3-30 00:45:28 | 只看該作者
Yichao Lu,Ruihai Dong,Barry Smythparticular, we want to investigate the conditions under which a path is a minimum of the action and those under which it is merely an extremum. For illustrative purposes we consider a particle in two-dimensional real space. If we parametrize the path between points . and . by ?, then Jacobi’s principle states:
50#
發(fā)表于 2025-3-30 06:49:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淅川县| 宁陵县| 留坝县| 山东省| 泰顺县| 潍坊市| 双流县| 贵州省| 当雄县| 黔西| 天水市| 女性| 梁山县| 华宁县| 登封市| 广丰县| 夏邑县| 阿克陶县| 徐水县| 中西区| 临泽县| 辰溪县| 开江县| 中山市| 洪泽县| 米泉市| 原阳县| 和田县| 清新县| 永靖县| 巩义市| 德保县| 彩票| 铁岭市| 西昌市| 怀远县| 垣曲县| 商丘市| 乐东| 台山市| 辽中县|