找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Quantum Dynamics; From Classical Paths Walter Dittrich,Martin Reuter Textbook 20013rd edition Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
樓主: Corticosteroids
31#
發(fā)表于 2025-3-27 00:32:50 | 只看該作者
Behavioural Physiology of Farm Mammals,We extend the perturbation theory of the previous chapter by going one order further and permitting several degrees of freedom. So let the unperturbed problem ..(..) be solved. Then we expand the perturbed Hamiltonian in the (.., ..)-“basis” according to
32#
發(fā)表于 2025-3-27 03:18:25 | 只看該作者
https://doi.org/10.1007/978-3-642-85278-7In the present chapter we are concerned with systems, the change of which — with the exception of a single degree of freedom — should proceed slowly. (Compare the pertinent remarks about ε as slow parameter in Chap. 7.) Accordingly, the Hamiltonian reads:
33#
發(fā)表于 2025-3-27 07:51:10 | 只看該作者
34#
發(fā)表于 2025-3-27 12:47:26 | 只看該作者
35#
發(fā)表于 2025-3-27 17:24:59 | 只看該作者
https://doi.org/10.1007/978-94-009-1145-1We now want to compute the kernel .) for a few simple Lagrangians. We have already found for the one-dimensional case that . with
36#
發(fā)表于 2025-3-27 19:25:18 | 只看該作者
Introduction,The subject of this monograph is classical and quantum dynamics. We are fully aware that this combination is somewhat unusual, for history has taught us convincingly that these two subjects are founded on totally different concepts; a smooth transition between them has so far never been made and probably never will.
37#
發(fā)表于 2025-3-28 01:28:47 | 只看該作者
The Action Principles in Mechanics,We begin this chapter with the definition of the action functional as time integral over the Lagrangian ..., ... of a dynamical system:
38#
發(fā)表于 2025-3-28 04:29:36 | 只看該作者
39#
發(fā)表于 2025-3-28 09:33:44 | 只看該作者
40#
發(fā)表于 2025-3-28 13:09:03 | 只看該作者
Canonical Transformations,Let .., ..,..., .., .....,..... be 2. independent canonical variables, which satisfy Hamilton’s equations:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆尧县| 泾阳县| 卓资县| 鄂尔多斯市| 礼泉县| 东丽区| 肇州县| 东乌珠穆沁旗| 洛阳市| 扶风县| 成武县| 航空| 从化市| 上饶市| 望都县| 阿克苏市| 大港区| 阿尔山市| 廊坊市| 嘉兴市| 柯坪县| 滨海县| 墨竹工卡县| 濮阳市| 安化县| 杭锦后旗| 盱眙县| 阿坝县| 泽普县| 突泉县| 五华县| 普兰县| 新密市| 新田县| 进贤县| 邵阳市| 临湘市| 曲阜市| 璧山县| 平乐县| 昌邑市|