找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Quantum Dynamics; From Classical Paths Walter Dittrich,Martin Reuter Textbook 20013rd edition Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
樓主: Corticosteroids
51#
發(fā)表于 2025-3-30 10:47:32 | 只看該作者
https://doi.org/10.1007/978-3-642-85278-7rs appear in the expression for the adiabatic invariants. We now wish to begin to locally remove such resonances by trying, with the help of a canonical transformation, to go to a coordinate system which rotates with the resonant frequency.
52#
發(fā)表于 2025-3-30 14:19:15 | 只看該作者
53#
發(fā)表于 2025-3-30 20:10:11 | 只看該作者
54#
發(fā)表于 2025-3-30 22:26:22 | 只看該作者
55#
發(fā)表于 2025-3-31 01:09:24 | 只看該作者
Jacobi Fields, Conjugate Points,particular, we want to investigate the conditions under which a path is a minimum of the action and those under which it is merely an extremum. For illustrative purposes we consider a particle in two-dimensional real space. If we parametrize the path between points . and . by ?, then Jacobi’s princi
56#
發(fā)表于 2025-3-31 08:55:47 | 只看該作者
Action-Angle Variables,, ..) is the generator of a canonical transformation to new constant momenta .., (all .., are ignorable), and the new Hamiltonian depends only on the ..,: . = . = .(..). Besides, the following canonical equations are valid:
57#
發(fā)表于 2025-3-31 09:40:08 | 只看該作者
Time-Independent Canonical Perturbation Theory, conservative, ?./?. = 0, and periodic in both the unperturbed and perturbed case. In addition to periodicity, we shall require the Hamilton-Jacobi equation to be separable for the unperturbed situation. The unperturbed problem ..(..) which is described by the action-angle variables .. and .. will b
58#
發(fā)表于 2025-3-31 17:03:52 | 只看該作者
Removal of Resonances,rs appear in the expression for the adiabatic invariants. We now wish to begin to locally remove such resonances by trying, with the help of a canonical transformation, to go to a coordinate system which rotates with the resonant frequency.
59#
發(fā)表于 2025-3-31 21:27:39 | 只看該作者
60#
發(fā)表于 2025-4-1 01:44:08 | 只看該作者
The KAM Theorem,rator .(.,., ..) converges (according to Newton’s procedure) and thus the invariant tori are not destroyed. The KAM theorem is valid for systems with two and more degrees of freedom. However, in the following, we shall deal exclusively with the case of two degrees of freedom.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
叶城县| 长治县| 元谋县| 金堂县| 镇原县| 白银市| 石家庄市| 米易县| 长岛县| 清镇市| 井陉县| 齐河县| 长宁县| 城口县| 苏尼特左旗| 玛沁县| 兴文县| 灵武市| 台东县| 静乐县| 阜阳市| 色达县| 义马市| 青河县| 蕲春县| 柳河县| 峨眉山市| 仙居县| 巧家县| 利川市| 新和县| 华安县| 大荔县| 嘉荫县| 方城县| 民权县| 玉环县| 萍乡市| 枣阳市| 巫溪县| 鹤庆县|