找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Quantum Dynamics; From Classical Paths Walter Dittrich,Martin Reuter Textbook 20013rd edition Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
樓主: Corticosteroids
31#
發(fā)表于 2025-3-27 00:32:50 | 只看該作者
Behavioural Physiology of Farm Mammals,We extend the perturbation theory of the previous chapter by going one order further and permitting several degrees of freedom. So let the unperturbed problem ..(..) be solved. Then we expand the perturbed Hamiltonian in the (.., ..)-“basis” according to
32#
發(fā)表于 2025-3-27 03:18:25 | 只看該作者
https://doi.org/10.1007/978-3-642-85278-7In the present chapter we are concerned with systems, the change of which — with the exception of a single degree of freedom — should proceed slowly. (Compare the pertinent remarks about ε as slow parameter in Chap. 7.) Accordingly, the Hamiltonian reads:
33#
發(fā)表于 2025-3-27 07:51:10 | 只看該作者
34#
發(fā)表于 2025-3-27 12:47:26 | 只看該作者
35#
發(fā)表于 2025-3-27 17:24:59 | 只看該作者
https://doi.org/10.1007/978-94-009-1145-1We now want to compute the kernel .) for a few simple Lagrangians. We have already found for the one-dimensional case that . with
36#
發(fā)表于 2025-3-27 19:25:18 | 只看該作者
Introduction,The subject of this monograph is classical and quantum dynamics. We are fully aware that this combination is somewhat unusual, for history has taught us convincingly that these two subjects are founded on totally different concepts; a smooth transition between them has so far never been made and probably never will.
37#
發(fā)表于 2025-3-28 01:28:47 | 只看該作者
The Action Principles in Mechanics,We begin this chapter with the definition of the action functional as time integral over the Lagrangian ..., ... of a dynamical system:
38#
發(fā)表于 2025-3-28 04:29:36 | 只看該作者
39#
發(fā)表于 2025-3-28 09:33:44 | 只看該作者
40#
發(fā)表于 2025-3-28 13:09:03 | 只看該作者
Canonical Transformations,Let .., ..,..., .., .....,..... be 2. independent canonical variables, which satisfy Hamilton’s equations:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永善县| 临漳县| 甘泉县| 林州市| 新泰市| 普宁市| 昌邑市| 新沂市| 安康市| 长白| 绿春县| 永德县| 岑溪市| 广饶县| 友谊县| 漾濞| 宜都市| 曲沃县| 双流县| 南京市| 扎赉特旗| 金川县| 隆昌县| 通榆县| 开阳县| 合肥市| 石阡县| 晋江市| 喀喇| 称多县| 盘山县| 云浮市| 佛冈县| 南涧| 庆元县| 新建县| 阳春市| 五台县| 永济市| 涟水县| 尚志市|