找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Potential Theory and Its Probabilistic Counterpart; Joseph L. Doob Book 2001 Springer-Verlag Berlin Heidelberg 2001 31XX.Brownia

[復(fù)制鏈接]
查看: 33159|回復(fù): 59
樓主
發(fā)表于 2025-3-21 18:52:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Classical Potential Theory and Its Probabilistic Counterpart
編輯Joseph L. Doob
視頻videohttp://file.papertrans.cn/228/227122/227122.mp4
概述Includes supplementary material:
叢書(shū)名稱(chēng)Classics in Mathematics
圖書(shū)封面Titlebook: Classical Potential Theory and Its Probabilistic Counterpart;  Joseph L. Doob Book 2001 Springer-Verlag Berlin Heidelberg 2001 31XX.Brownia
描述From the reviews: "This huge book written in several years by one of the few mathematicians able to do it, appears as a precise and impressive study (not very easy to read) of this bothsided question that replaces, in a coherent way, without being encyclopaedic, a large library of books and papers scattered without a uniform language. Instead of summarizing the author gives his own way of exposition with original complements. This requires no preliminary knowledge. ...The purpose which the author explains in his introduction, i.e. a deep probabilistic interpretation of potential theory and a link between two great theories, appears fulfilled in a masterly manner"..M. Brelot in Metrika (1986)
出版日期Book 2001
關(guān)鍵詞31XX; Brownian motion; Markov process; Martingale; Potential theory; Probabilistic Potential Theory; Stoch
版次1
doihttps://doi.org/10.1007/978-3-642-56573-1
isbn_softcover978-3-540-41206-9
isbn_ebook978-3-642-56573-1Series ISSN 1431-0821 Series E-ISSN 2512-5257
issn_series 1431-0821
copyrightSpringer-Verlag Berlin Heidelberg 2001
The information of publication is updating

書(shū)目名稱(chēng)Classical Potential Theory and Its Probabilistic Counterpart影響因子(影響力)




書(shū)目名稱(chēng)Classical Potential Theory and Its Probabilistic Counterpart影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Classical Potential Theory and Its Probabilistic Counterpart網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Classical Potential Theory and Its Probabilistic Counterpart網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Classical Potential Theory and Its Probabilistic Counterpart被引頻次




書(shū)目名稱(chēng)Classical Potential Theory and Its Probabilistic Counterpart被引頻次學(xué)科排名




書(shū)目名稱(chēng)Classical Potential Theory and Its Probabilistic Counterpart年度引用




書(shū)目名稱(chēng)Classical Potential Theory and Its Probabilistic Counterpart年度引用學(xué)科排名




書(shū)目名稱(chēng)Classical Potential Theory and Its Probabilistic Counterpart讀者反饋




書(shū)目名稱(chēng)Classical Potential Theory and Its Probabilistic Counterpart讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:02:06 | 只看該作者
Parabolic Potential Theory: Basic Factss the set of points of . that are endpoints of continuous [strictly] downward-directed arcs from ξ?. That is, η? is [strictly] below ξ? relative to ? if and only if there is a continuous function . from [0, 1] into ? for which .(0)=ξ?, .(1)=η?, and ord . is a [strictly] decreasing function. The . of
板凳
發(fā)表于 2025-3-22 03:26:29 | 只看該作者
Places/Non-places: Galicia on the ,uclidean topology. Since the fine topology is defined intrinsically in terms of superharmonic functions, it is not surprising that this topology plays a fundamental role in classical potential theory.
地板
發(fā)表于 2025-3-22 07:41:48 | 只看該作者
5#
發(fā)表于 2025-3-22 11:10:12 | 只看該作者
Classical Potential Theory and Its Probabilistic Counterpart
6#
發(fā)表于 2025-3-22 15:21:27 | 只看該作者
7#
發(fā)表于 2025-3-22 17:47:13 | 只看該作者
8#
發(fā)表于 2025-3-23 01:07:53 | 只看該作者
9#
發(fā)表于 2025-3-23 01:37:33 | 只看該作者
10#
發(fā)表于 2025-3-23 09:14:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盈江县| 宕昌县| 米脂县| 柳江县| 诸城市| 塔河县| 资阳市| 车致| 云阳县| 巴林左旗| 松滋市| 策勒县| 盐池县| 华亭县| 西昌市| 甘泉县| 武冈市| 博兴县| 剑阁县| 宾阳县| 安福县| 延寿县| 堆龙德庆县| 仙游县| 辽阳市| 安平县| 隆昌县| 安泽县| 石泉县| 白山市| 金昌市| 珠海市| 铅山县| 花莲市| 崇仁县| 临武县| 博野县| 清丰县| 施甸县| 河北区| 平罗县|