找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Potential Theory and Its Probabilistic Counterpart; Joseph L. Doob Book 2001 Springer-Verlag Berlin Heidelberg 2001 31XX.Brownia

[復(fù)制鏈接]
樓主: 明顯
11#
發(fā)表于 2025-3-23 13:28:24 | 只看該作者
12#
發(fā)表于 2025-3-23 14:56:47 | 只看該作者
Introduction to the Mathematical Background of Classical Potential TheoryIn this chapter some of the mathematical ideas of classical potential theory are introduced, under simplifying assumptions. The basic space is Euclidean . space ?.. For a ball .(ξ, δ) in ?.
13#
發(fā)表于 2025-3-23 18:49:02 | 只看該作者
14#
發(fā)表于 2025-3-23 22:32:57 | 只看該作者
15#
發(fā)表于 2025-3-24 02:49:40 | 只看該作者
The Fundamental Convergence Theorem and the Reduction Operation.. Let Γ: {u., α ∈ I} be a family of superharmonic functions defined on an open subset of ?., locally uniformly bounded below, and define the lower envelope u by u(ξ) = ..u.(ξ). Then .u ≤ u, ..
16#
發(fā)表于 2025-3-24 09:56:48 | 只看該作者
17#
發(fā)表于 2025-3-24 14:29:40 | 只看該作者
The Martin BoundaryLet . be an open subset of ?.. If . is a ball, its Euclidean boundary is so well adapted to it from a potential theoretic point of view that the following statements are true.
18#
發(fā)表于 2025-3-24 15:39:07 | 只看該作者
19#
發(fā)表于 2025-3-24 20:12:32 | 只看該作者
978-3-540-41206-9Springer-Verlag Berlin Heidelberg 2001
20#
發(fā)表于 2025-3-25 03:04:27 | 只看該作者
Basic Properties of Harmonic, Subharmonic, and Superharmonic Functions = δ.. To simplify the notation take ξ. = .. Then .., as defined by.with the understanding that ..(ξ, ξ)= +∞, satisfies items (ix′)–(ivx′) of Section 1.8, so that harmonic measure for . is given by.where .. here refers to surface area on ?. and
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宣城市| 万州区| 依兰县| 朝阳县| 崇左市| 临颍县| 抚顺市| 临湘市| 富川| 蕲春县| 离岛区| 恩施市| 灵武市| 青铜峡市| 曲沃县| 广元市| 尉犁县| 侯马市| 青神县| 米林县| 赤城县| 巴林右旗| 开封县| 新兴县| 建水县| 长子县| 汪清县| 会昌县| 平原县| 当雄县| 湟中县| 西乌珠穆沁旗| 芒康县| 永顺县| 蛟河市| 怀远县| 崇礼县| 永宁县| 新泰市| 手游| 旬阳县|