找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Potential Theory and Its Probabilistic Counterpart; Joseph L. Doob Book 2001 Springer-Verlag Berlin Heidelberg 2001 31XX.Brownia

[復(fù)制鏈接]
樓主: 明顯
11#
發(fā)表于 2025-3-23 13:28:24 | 只看該作者
12#
發(fā)表于 2025-3-23 14:56:47 | 只看該作者
Introduction to the Mathematical Background of Classical Potential TheoryIn this chapter some of the mathematical ideas of classical potential theory are introduced, under simplifying assumptions. The basic space is Euclidean . space ?.. For a ball .(ξ, δ) in ?.
13#
發(fā)表于 2025-3-23 18:49:02 | 只看該作者
14#
發(fā)表于 2025-3-23 22:32:57 | 只看該作者
15#
發(fā)表于 2025-3-24 02:49:40 | 只看該作者
The Fundamental Convergence Theorem and the Reduction Operation.. Let Γ: {u., α ∈ I} be a family of superharmonic functions defined on an open subset of ?., locally uniformly bounded below, and define the lower envelope u by u(ξ) = ..u.(ξ). Then .u ≤ u, ..
16#
發(fā)表于 2025-3-24 09:56:48 | 只看該作者
17#
發(fā)表于 2025-3-24 14:29:40 | 只看該作者
The Martin BoundaryLet . be an open subset of ?.. If . is a ball, its Euclidean boundary is so well adapted to it from a potential theoretic point of view that the following statements are true.
18#
發(fā)表于 2025-3-24 15:39:07 | 只看該作者
19#
發(fā)表于 2025-3-24 20:12:32 | 只看該作者
978-3-540-41206-9Springer-Verlag Berlin Heidelberg 2001
20#
發(fā)表于 2025-3-25 03:04:27 | 只看該作者
Basic Properties of Harmonic, Subharmonic, and Superharmonic Functions = δ.. To simplify the notation take ξ. = .. Then .., as defined by.with the understanding that ..(ξ, ξ)= +∞, satisfies items (ix′)–(ivx′) of Section 1.8, so that harmonic measure for . is given by.where .. here refers to surface area on ?. and
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泽州县| 新平| 湟中县| 东乡| 金秀| 怀宁县| 浦江县| 鸡西市| 师宗县| 顺平县| 铁岭县| 义乌市| 崇文区| 平凉市| 乐至县| 上杭县| 东丰县| 望都县| 临澧县| 利津县| 建宁县| 晋城| 玉溪市| 正蓝旗| 会泽县| 大余县| 宁晋县| 澄迈县| 多伦县| 郑州市| 宜兰县| 常山县| 泌阳县| 壤塘县| 昭苏县| 洪洞县| 金山区| 宜城市| 错那县| 綦江县| 澄迈县|