找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Potential Theory and Its Probabilistic Counterpart; Joseph L. Doob Book 2001 Springer-Verlag Berlin Heidelberg 2001 31XX.Brownia

[復(fù)制鏈接]
樓主: 明顯
21#
發(fā)表于 2025-3-25 03:31:44 | 只看該作者
Polar Sets and Their Applicationsch point of the set in the neighborhood. An . set is a set whose compact subsets are polar. It will be shown in Section VI.2 that an analytic inner polar set is polar. If a set is (inner) polar its Kelvin transforms are also.
22#
發(fā)表于 2025-3-25 08:18:35 | 只看該作者
23#
發(fā)表于 2025-3-25 15:11:00 | 只看該作者
Classical Energy and Capacityductor, if . is a connected conducting body in ?., the charge on . distributes itself in such a way that the net effect is that of an all-positive or all-negative charge, and the distribution on . is in equilibrium in the sense that the restriction to . of the potential of the charge distribution in ?. is a constant function.
24#
發(fā)表于 2025-3-25 15:49:15 | 只看該作者
25#
發(fā)表于 2025-3-25 20:32:21 | 只看該作者
Subparabolic, Superparabolic, and Parabolic Functions on a SlabXV. 7 for smooth regions. It is therefore to be expected from XV (7.3) that the upper boundary of ? if δ<+∞ is a parabolic measure null set and that parabolic measure on the lower boundary is given by. so that if u? is parabolic on ? with boundary function . in some suitable sense on the lower boundary and if u? is appropriately restricted, then
26#
發(fā)表于 2025-3-26 03:06:02 | 只看該作者
Parabolic Potential Theory (Continued)if there is one, is denoted by ?M.Γ [?M.Γ]. For example, if Γ is a class of superparabolic functions and if Γ has a subparabolic minorant then ?M.Γ exists and is parabolic. The proof is a translation of that of Theorem III.2. The corresponding notation in the coparabolic context is . and..
27#
發(fā)表于 2025-3-26 05:36:03 | 只看該作者
The Parabolic Dirichlet Problem, Sweeping, and Exceptional Sets if v? is parabolic, superparabolic, or subparabolic, respectively. The notation will be parallel to that in the classical context, with ? omitted when ? ≡ 1. Thus.,.,.,. … need no further identification. In the dual context in which ? is coparabolic we write.,.,.,., …
28#
發(fā)表于 2025-3-26 09:42:31 | 只看該作者
29#
發(fā)表于 2025-3-26 14:35:41 | 只看該作者
30#
發(fā)表于 2025-3-26 20:10:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
共和县| 宣汉县| 西平县| 威宁| 宁陕县| 康马县| 高唐县| 辽中县| 根河市| 溆浦县| 镇雄县| 原阳县| 保德县| 加查县| 深水埗区| 涞源县| 泸水县| 辽宁省| 广丰县| 渝北区| 多伦县| 淮安市| 来安县| 黄骅市| 闸北区| 蒲江县| 保德县| 华亭县| 广河县| 鄂托克旗| 大洼县| 鱼台县| 巴楚县| 邯郸市| 五台县| 方山县| 尉氏县| 洱源县| 元朗区| 甘泉县| 瓦房店市|