找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Potential Theory and Its Probabilistic Counterpart; Joseph L. Doob Book 2001 Springer-Verlag Berlin Heidelberg 2001 31XX.Brownia

[復(fù)制鏈接]
樓主: 明顯
51#
發(fā)表于 2025-3-30 11:00:15 | 只看該作者
The Dirichlet Problem for Relative Harmonic Functionsclosure in ., if .. is the class of all such balls, and if μ.(ξ, .) is the unweighted average of . on ?., then the class of continuous functions on . satisfying (1.1) is the class of harmonic functions on .. Going back to the general case, suppose that . is a strictly positive generalized harmonic function and define μ..(ξ, ·) by
52#
發(fā)表于 2025-3-30 13:36:04 | 只看該作者
Book 2001liminary knowledge. ...The purpose which the author explains in his introduction, i.e. a deep probabilistic interpretation of potential theory and a link between two great theories, appears fulfilled in a masterly manner"..M. Brelot in Metrika (1986)
53#
發(fā)表于 2025-3-30 16:48:42 | 只看該作者
Book 2001not very easy to read) of this bothsided question that replaces, in a coherent way, without being encyclopaedic, a large library of books and papers scattered without a uniform language. Instead of summarizing the author gives his own way of exposition with original complements. This requires no pre
54#
發(fā)表于 2025-3-30 22:13:34 | 只看該作者
55#
發(fā)表于 2025-3-31 00:55:34 | 只看該作者
Heidi Kelley,Kenneth A. Betsalelclosure in ., if .. is the class of all such balls, and if μ.(ξ, .) is the unweighted average of . on ?., then the class of continuous functions on . satisfying (1.1) is the class of harmonic functions on .. Going back to the general case, suppose that . is a strictly positive generalized harmonic function and define μ..(ξ, ·) by
56#
發(fā)表于 2025-3-31 07:13:20 | 只看該作者
1431-0821 appears as a precise and impressive study (not very easy to read) of this bothsided question that replaces, in a coherent way, without being encyclopaedic, a large library of books and papers scattered without a uniform language. Instead of summarizing the author gives his own way of exposition with
57#
發(fā)表于 2025-3-31 11:51:37 | 只看該作者
58#
發(fā)表于 2025-3-31 15:29:14 | 只看該作者
Green Functionsists for every ξ in .. In fact .(ξ , ·)–.(ξ, ·) is bounded below outside each neighborhood of ξ, and .(ξ, ·) is bounded below on each compact neighborhood of ξ so that if GM..(ξ, ·) exists, .(ξ , ·) ≥ . + GM..(ξ, ·) GM..(ξ , ·) ≥ . + GM..(ξ, ·) for some constant . depending on ξand ξ.
59#
發(fā)表于 2025-3-31 20:09:04 | 只看該作者
Basic Properties of Harmonic, Subharmonic, and Superharmonic Functions = δ.. To simplify the notation take ξ. = .. Then .., as defined by.with the understanding that ..(ξ, ξ)= +∞, satisfies items (ix′)–(ivx′) of Section 1.8, so that harmonic measure for . is given by.where .. here refers to surface area on ?. and
60#
發(fā)表于 2025-4-1 01:03:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐池县| 吉林省| 康定县| 许昌市| 广东省| 睢宁县| 察隅县| 寿光市| 米易县| 南京市| 古田县| 清远市| 平罗县| 龙游县| 临沧市| 吉木乃县| 武冈市| 翼城县| 云梦县| 梁平县| 尼木县| 余庆县| 北宁市| 连山| 阜康市| 靖边县| 上饶市| 绥化市| 仪征市| 保德县| 绩溪县| 新兴县| 南澳县| 沽源县| 宣恩县| 绥宁县| 贵定县| 门源| 棋牌| 仁怀市| 枞阳县|