找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Class Field Theory; From Theory to Pract Georges Gras Book 2003 Springer-Verlag Berlin Heidelberg 2003 Abelian closure.Class field theory.a

[復(fù)制鏈接]
樓主: Pierce
11#
發(fā)表于 2025-3-23 13:00:13 | 只看該作者
12#
發(fā)表于 2025-3-23 16:05:47 | 只看該作者
Repair and Servicing of Road Vehiclescesses, will enable us to understand the structure of the maximal abelian extension of a number field . (Section 4 of the present chapter). Indeed, since any finite abelian extension of . is contained in a ray class field .(m)., we have ., where m ranges in the set of moduli of ..
13#
發(fā)表于 2025-3-23 18:12:53 | 只看該作者
Repair and Servicing of Road Vehiclesiori completely different, and one usually studies the corresponding invariants of . using several means. This chapter explains the two classical approaches: invariant classes formulas and genus theory.
14#
發(fā)表于 2025-3-23 23:29:58 | 只看該作者
15#
發(fā)表于 2025-3-24 05:35:56 | 只看該作者
https://doi.org/10.1007/978-3-662-11323-3Abelian closure; Class field theory; algebra; idele groups; number fields; number theory; reciprocity laws
16#
發(fā)表于 2025-3-24 07:15:33 | 只看該作者
978-3-642-07908-5Springer-Verlag Berlin Heidelberg 2003
17#
發(fā)表于 2025-3-24 11:29:34 | 只看該作者
18#
發(fā)表于 2025-3-24 15:12:42 | 只看該作者
Repair and Servicing of Road Vehiclescesses, will enable us to understand the structure of the maximal abelian extension of a number field . (Section 4 of the present chapter). Indeed, since any finite abelian extension of . is contained in a ray class field .(m)., we have ., where m ranges in the set of moduli of ..
19#
發(fā)表于 2025-3-24 21:47:18 | 只看該作者
20#
發(fā)表于 2025-3-25 00:36:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 13:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻栗坡县| 百色市| 建瓯市| 孝昌县| 七台河市| 泰和县| 丰镇市| 宜兰县| 金山区| 青州市| 将乐县| 奉贤区| 连山| 莎车县| 千阳县| 万宁市| 阳新县| 普兰店市| 会宁县| 万山特区| 秦安县| 五大连池市| 莆田市| 高邑县| 安岳县| 龙岩市| 全州县| 荃湾区| 金溪县| 镇雄县| 邯郸市| 东乡族自治县| 甘德县| 兴海县| 当雄县| 定安县| 来宾市| 永康市| 昌图县| 杨浦区| 图木舒克市|