找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Class Field Theory; From Theory to Pract Georges Gras Book 2003 Springer-Verlag Berlin Heidelberg 2003 Abelian closure.Class field theory.a

[復(fù)制鏈接]
樓主: Pierce
21#
發(fā)表于 2025-3-25 05:09:27 | 只看該作者
Invariant Class Groups in ,-Ramification Genus Theory,iori completely different, and one usually studies the corresponding invariants of . using several means. This chapter explains the two classical approaches: invariant classes formulas and genus theory.
22#
發(fā)表于 2025-3-25 07:38:16 | 只看該作者
https://doi.org/10.1007/978-1-349-11098-8This chapter gives the definitions of the objects which will be used throughout this book. We are thus led to give the main general notations.
23#
發(fā)表于 2025-3-25 14:58:06 | 只看該作者
Basic Tools and Notations,This chapter gives the definitions of the objects which will be used throughout this book. We are thus led to give the main general notations.
24#
發(fā)表于 2025-3-25 16:30:46 | 只看該作者
Reciprocity Maps Existence Theorems,nd commented so as to be used. This is so true that, as we will see several times, a classical proof consists in . local class field theory from global class field theory, as was initiated by Hasse and Schmidt in 1930, and in particular to base some local computations on global arguments (a typical
25#
發(fā)表于 2025-3-25 21:06:08 | 只看該作者
,Abelian Extensions with Restricted Ramification — Abelian Closure,cesses, will enable us to understand the structure of the maximal abelian extension of a number field . (Section 4 of the present chapter). Indeed, since any finite abelian extension of . is contained in a ray class field .(m)., we have ., where m ranges in the set of moduli of ..
26#
發(fā)表于 2025-3-26 02:23:35 | 只看該作者
27#
發(fā)表于 2025-3-26 04:54:54 | 只看該作者
28#
發(fā)表于 2025-3-26 11:55:55 | 只看該作者
7樓
29#
發(fā)表于 2025-3-26 12:40:39 | 只看該作者
8樓
30#
發(fā)表于 2025-3-26 18:35:38 | 只看該作者
8樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 13:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芮城县| 肃宁县| 景洪市| 阳原县| 沭阳县| 兴文县| 波密县| 阜新市| 云阳县| 南安市| 夹江县| 阜宁县| 融水| 中西区| 垫江县| 海兴县| 小金县| 哈巴河县| 西昌市| 洛隆县| 朝阳市| 澄城县| 沂南县| 玛曲县| 新巴尔虎右旗| 乾安县| 申扎县| 舒兰市| 儋州市| 大厂| 蕉岭县| 安康市| 岳普湖县| 常州市| 文成县| 岱山县| 武汉市| 炎陵县| 兴安县| 堆龙德庆县| 乌什县|