找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Class Field Theory; From Theory to Pract Georges Gras Book 2003 Springer-Verlag Berlin Heidelberg 2003 Abelian closure.Class field theory.a

[復(fù)制鏈接]
樓主: Pierce
21#
發(fā)表于 2025-3-25 05:09:27 | 只看該作者
Invariant Class Groups in ,-Ramification Genus Theory,iori completely different, and one usually studies the corresponding invariants of . using several means. This chapter explains the two classical approaches: invariant classes formulas and genus theory.
22#
發(fā)表于 2025-3-25 07:38:16 | 只看該作者
https://doi.org/10.1007/978-1-349-11098-8This chapter gives the definitions of the objects which will be used throughout this book. We are thus led to give the main general notations.
23#
發(fā)表于 2025-3-25 14:58:06 | 只看該作者
Basic Tools and Notations,This chapter gives the definitions of the objects which will be used throughout this book. We are thus led to give the main general notations.
24#
發(fā)表于 2025-3-25 16:30:46 | 只看該作者
Reciprocity Maps Existence Theorems,nd commented so as to be used. This is so true that, as we will see several times, a classical proof consists in . local class field theory from global class field theory, as was initiated by Hasse and Schmidt in 1930, and in particular to base some local computations on global arguments (a typical
25#
發(fā)表于 2025-3-25 21:06:08 | 只看該作者
,Abelian Extensions with Restricted Ramification — Abelian Closure,cesses, will enable us to understand the structure of the maximal abelian extension of a number field . (Section 4 of the present chapter). Indeed, since any finite abelian extension of . is contained in a ray class field .(m)., we have ., where m ranges in the set of moduli of ..
26#
發(fā)表于 2025-3-26 02:23:35 | 只看該作者
27#
發(fā)表于 2025-3-26 04:54:54 | 只看該作者
28#
發(fā)表于 2025-3-26 11:55:55 | 只看該作者
7樓
29#
發(fā)表于 2025-3-26 12:40:39 | 只看該作者
8樓
30#
發(fā)表于 2025-3-26 18:35:38 | 只看該作者
8樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 16:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
同德县| 杭锦后旗| 隆化县| 新密市| 鞍山市| 犍为县| 自贡市| 綦江县| 芜湖县| 康定县| 新密市| 德钦县| 资中县| 马公市| 乐山市| 汉川市| 阿鲁科尔沁旗| 澄江县| 广丰县| 德保县| 扎赉特旗| 津南区| 嘉祥县| 普宁市| 乌审旗| 吴旗县| 澄迈县| 遵义县| 双城市| 永兴县| 城固县| 离岛区| 佳木斯市| 蓝田县| 赤城县| 河津市| 江山市| 石阡县| 台东县| 农安县| 陈巴尔虎旗|