找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cardinal Invariants on Boolean Algebras; Second Revised Editi J. Donald Monk Book 2014Latest edition Springer Basel 2014 Boolean algebra.ca

[復(fù)制鏈接]
樓主: 雜技演員
11#
發(fā)表于 2025-3-23 12:51:09 | 只看該作者
12#
發(fā)表于 2025-3-23 16:14:28 | 只看該作者
https://doi.org/10.1007/3-540-06721-3A BA . is said to satisfy the κ-. (κ-cc) if every disjoint subset of . has power <κ. Thus for κ non-limit, this is the same as saying that the cellularity of . is <κ. Of most interest is the ω.-chain condition, called ccc for short (countable chain condition). We shall return to it below.
13#
發(fā)表于 2025-3-23 20:37:28 | 只看該作者
https://doi.org/10.1007/3-540-06721-3Recall that Depth(.) is the supremum of cardinalities of subsets of . which are well ordered by the Boolean ordering. There are two main references for results about this notion: McKenzie, Monk [82] and (implicitly) Gr?tzer, Lakser [69].
14#
發(fā)表于 2025-3-24 00:14:14 | 只看該作者
15#
發(fā)表于 2025-3-24 03:45:09 | 只看該作者
16#
發(fā)表于 2025-3-24 06:31:57 | 只看該作者
17#
發(fā)表于 2025-3-24 12:09:09 | 只看該作者
18#
發(fā)表于 2025-3-24 15:00:38 | 只看該作者
https://doi.org/10.1007/3-540-06721-3We denote .. The behaviour of this function under algebraic operations is for the most part obvious. Note, though, that questions about its behaviour under ultraproducts are the same as the well-known and difficult problems concerning the cardinality of ultraproducts in general.
19#
發(fā)表于 2025-3-24 20:29:29 | 只看該作者
20#
發(fā)表于 2025-3-24 23:19:23 | 只看該作者
https://doi.org/10.1007/3-540-06721-3First of all, note that if F is a non-principal ultrafilter on a BA ., then.. To see this, suppose that X is a finite set of non-zero elements of . which is dense in ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
英超| 车险| 菏泽市| 彭阳县| 金阳县| 安岳县| 藁城市| 家居| 安远县| 澎湖县| 琼海市| 平武县| 林州市| 保定市| 永年县| 佳木斯市| 和静县| 波密县| 台中县| 建水县| 奉贤区| 中方县| 阳城县| 万州区| 阿巴嘎旗| 大同县| 临邑县| 武威市| 阜平县| 桑植县| 扎囊县| 娄底市| 玉树县| 信丰县| 阿城市| 荣昌县| 莆田市| 定结县| 和林格尔县| 庆阳市| 临澧县|