找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cardinal Invariants on Boolean Algebras; Second Revised Editi J. Donald Monk Book 2014Latest edition Springer Basel 2014 Boolean algebra.ca

[復(fù)制鏈接]
樓主: 雜技演員
21#
發(fā)表于 2025-3-25 06:22:14 | 只看該作者
https://doi.org/10.1007/3-540-06721-3Again we note first of all that if . is a non-principal ultrafilter in a BA ., then ..
22#
發(fā)表于 2025-3-25 10:59:34 | 只看該作者
23#
發(fā)表于 2025-3-25 11:59:23 | 只看該作者
24#
發(fā)表于 2025-3-25 18:38:06 | 只看該作者
Gustav Georg Belz,Martin StauchRecall from just before Proposition 13.4 the definition of a right-separated sequencein a topological space. Let . be an ordinal.
25#
發(fā)表于 2025-3-25 23:53:39 | 只看該作者
26#
發(fā)表于 2025-3-26 02:03:29 | 只看該作者
Gustav Georg Belz,Martin Stauch(Note that when we say that . is a tree included in ., we mean merely that . is a subset of . which is a tree under the induced ordering; there is no assumption that incomparable elements (in . ) are disjoint (in the dual of .).) ..
27#
發(fā)表于 2025-3-26 07:51:10 | 只看該作者
Gustav Georg Belz,Martin Stauch., h-cof.. sup. : ....
28#
發(fā)表于 2025-3-26 11:40:28 | 只看該作者
Special Operations on Boolean Algebras,We give the basic definitions and facts about several operations on Boolean algebras which were not discussed in the Handbook.
29#
發(fā)表于 2025-3-26 14:34:50 | 只看該作者
Special Classes of Boolean Algebras,We discuss several special classes of Boolean algebras not mentioned in the Handbook.
30#
發(fā)表于 2025-3-26 18:17:08 | 只看該作者
Cellularity,A BA . is said to satisfy the κ-. (κ-cc) if every disjoint subset of . has power <κ. Thus for κ non-limit, this is the same as saying that the cellularity of . is <κ. Of most interest is the ω.-chain condition, called ccc for short (countable chain condition). We shall return to it below.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 05:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
库伦旗| 赤峰市| 资溪县| 浦城县| 阿荣旗| 晋江市| 澄迈县| 横山县| 沅陵县| 尼玛县| 乐陵市| 高碑店市| 定陶县| 巴中市| 浑源县| 孙吴县| 商南县| 札达县| 平山县| 南充市| 曲周县| 诸城市| 金沙县| 清徐县| 鄂尔多斯市| 美姑县| 蚌埠市| 明水县| 肥乡县| 嘉黎县| 封开县| 青岛市| 扶绥县| 渭南市| 兴文县| 凌海市| 横山县| 惠来县| 闸北区| 鄂尔多斯市| 准格尔旗|