找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cardinal Invariants on Boolean Algebras; Second Revised Editi J. Donald Monk Book 2014Latest edition Springer Basel 2014 Boolean algebra.ca

[復(fù)制鏈接]
樓主: 雜技演員
21#
發(fā)表于 2025-3-25 06:22:14 | 只看該作者
https://doi.org/10.1007/3-540-06721-3Again we note first of all that if . is a non-principal ultrafilter in a BA ., then ..
22#
發(fā)表于 2025-3-25 10:59:34 | 只看該作者
23#
發(fā)表于 2025-3-25 11:59:23 | 只看該作者
24#
發(fā)表于 2025-3-25 18:38:06 | 只看該作者
Gustav Georg Belz,Martin StauchRecall from just before Proposition 13.4 the definition of a right-separated sequencein a topological space. Let . be an ordinal.
25#
發(fā)表于 2025-3-25 23:53:39 | 只看該作者
26#
發(fā)表于 2025-3-26 02:03:29 | 只看該作者
Gustav Georg Belz,Martin Stauch(Note that when we say that . is a tree included in ., we mean merely that . is a subset of . which is a tree under the induced ordering; there is no assumption that incomparable elements (in . ) are disjoint (in the dual of .).) ..
27#
發(fā)表于 2025-3-26 07:51:10 | 只看該作者
Gustav Georg Belz,Martin Stauch., h-cof.. sup. : ....
28#
發(fā)表于 2025-3-26 11:40:28 | 只看該作者
Special Operations on Boolean Algebras,We give the basic definitions and facts about several operations on Boolean algebras which were not discussed in the Handbook.
29#
發(fā)表于 2025-3-26 14:34:50 | 只看該作者
Special Classes of Boolean Algebras,We discuss several special classes of Boolean algebras not mentioned in the Handbook.
30#
發(fā)表于 2025-3-26 18:17:08 | 只看該作者
Cellularity,A BA . is said to satisfy the κ-. (κ-cc) if every disjoint subset of . has power <κ. Thus for κ non-limit, this is the same as saying that the cellularity of . is <κ. Of most interest is the ω.-chain condition, called ccc for short (countable chain condition). We shall return to it below.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秦皇岛市| 南昌县| 宽甸| 清原| 和硕县| 博罗县| 聊城市| 鄂尔多斯市| 阜平县| 平南县| 谢通门县| 浪卡子县| 剑阁县| 宁陕县| 洛川县| 庆城县| 虎林市| 池州市| 重庆市| 宿州市| 潮安县| 临武县| 广德县| 保德县| 延津县| 鄯善县| 顺平县| 南雄市| 和龙市| 塔城市| 华坪县| 绍兴市| 江山市| 仪陇县| 光泽县| 新绛县| 柳江县| 麻栗坡县| 靖安县| 泽库县| 唐河县|