找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Buildings of Spherical Type and Finite BN-Pairs; Jacques Tits Book 1974 Springer-Verlag Berlin Heidelberg 1974 Finite.Morphism.algebra.alg

[復(fù)制鏈接]
樓主: Lensometer
21#
發(fā)表于 2025-3-25 05:16:55 | 只看該作者
Buildings of type F4,A total ordering (resp. a numbering from 1 to 4) of the vertices of the diagram F. is called . if two consecutive vertices are joined by a single or double stroke (resp. if the ordering determined by this numbering is natural).
22#
發(fā)表于 2025-3-25 08:30:17 | 只看該作者
Appendix 1. Shadows,In 6.3, 7.4, 7.12, 10.13, we have seen that the study of weak buildings of the types A., C., D., F. is equivalent to the study of some “spaces” (projective spaces, polar spaces, etc.). The methods we have used to associate spaces to buildings are special cases of a general procedure which we shall describe here.
23#
發(fā)表于 2025-3-25 15:39:56 | 只看該作者
24#
發(fā)表于 2025-3-25 17:00:36 | 只看該作者
25#
發(fā)表于 2025-3-25 20:16:22 | 只看該作者
Coxeter complexes,t C′, which means, in other words, that there exists a folding of Σ which maps C′ onto C. . Σ .. The group generated by all reflections of a Coxeter complex Σ will be denoted by W(Σ) and called the . of Σ.
26#
發(fā)表于 2025-3-26 00:40:06 | 只看該作者
27#
發(fā)表于 2025-3-26 04:50:23 | 只看該作者
28#
發(fā)表于 2025-3-26 10:53:20 | 只看該作者
29#
發(fā)表于 2025-3-26 15:54:09 | 只看該作者
Teubner Studienbücher Mathematikonditions hold:. It is clear that Δ is a chamber complex and that the apartments are isomorphic subcomplexes. We shall see (3.15) that the isomorphism class of the apartments is entirely determined by Δ. More precisely, it can be shown that if a complex Δ possesses a set α of subcomplexes such that
30#
發(fā)表于 2025-3-26 18:48:17 | 只看該作者
Teubner Studienbücher Mathematikned over some field k, the group of k -rational points of X over k is denoted by X(k) (instead of X., as in [8]; the notations Z( ), R( ), R.( ) stand for “centralizer of”, “radical of”, “unipotent radical of” respectively; the group of all automorphisms (resp. all special automorphisms) of a buildi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 15:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安吉县| 洛隆县| 措美县| 土默特右旗| 连云港市| 玉环县| 岗巴县| 阿克陶县| 仙桃市| 博白县| 延津县| 安远县| 嘉祥县| 沙湾县| 伊吾县| 中西区| 桐柏县| 南昌市| 青州市| 东乌珠穆沁旗| 三江| 宁明县| 淮南市| 迭部县| 福清市| 股票| 伊金霍洛旗| 遵义县| 长治市| 通山县| 凯里市| 晋中市| 海宁市| 瓮安县| 梅河口市| 黑河市| 黄山市| 辽源市| 象山县| 阳城县| 嘉峪关市|