找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Buildings of Spherical Type and Finite BN-Pairs; Jacques Tits Book 1974 Springer-Verlag Berlin Heidelberg 1974 Finite.Morphism.algebra.alg

[復制鏈接]
查看: 43517|回復: 50
樓主
發(fā)表于 2025-3-21 17:34:30 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Buildings of Spherical Type and Finite BN-Pairs
影響因子2023Jacques Tits
視頻videohttp://file.papertrans.cn/192/191899/191899.mp4
學科分類Lecture Notes in Mathematics
圖書封面Titlebook: Buildings of Spherical Type and Finite BN-Pairs;  Jacques Tits Book 1974 Springer-Verlag Berlin Heidelberg 1974 Finite.Morphism.algebra.alg
影響因子These notes are a slightly revised and extended version of mim- graphed notes written on the occasion of a seminar on buildings and BN-pairs held at Oberwolfach in April 1968. Their main purpose is to present the solution of the following two problems: (A) Determination of the buildings of rank >; and irreducible, spherical type, other than ~ and H ("of spherical type" means "with finite Weyl 4 group", about the excluded types H, cf. the addenda on p. 274). Roughly speaking, those buildings all turn out to be associated to simple algebraic or classical groups (cf. 6. ;, 6. 1;, 8. 4. ;, 8. 22, 9. 1, 10. 2). An easy application provides the enumeration of all finite groups with BN-pairs of irreducible type and rank >;, up to normal subgroups contained in B (cf. 11. 7). (B) Determination of all isomorphisms between buildings of rank > 2 and spherical type associated to algebraic or classical simple groups and, in parti- cular, description of the full automorphism groups of such buildings (cf. 5. 8, 5. 9, 5. 10, 6. 6, 6. 1;, 8. 6, 9. ;, 10. 4). Except for the appendices, the notes are rather strictly oriented - ward these goals.
Pindex Book 1974
The information of publication is updating

書目名稱Buildings of Spherical Type and Finite BN-Pairs影響因子(影響力)




書目名稱Buildings of Spherical Type and Finite BN-Pairs影響因子(影響力)學科排名




書目名稱Buildings of Spherical Type and Finite BN-Pairs網(wǎng)絡公開度




書目名稱Buildings of Spherical Type and Finite BN-Pairs網(wǎng)絡公開度學科排名




書目名稱Buildings of Spherical Type and Finite BN-Pairs被引頻次




書目名稱Buildings of Spherical Type and Finite BN-Pairs被引頻次學科排名




書目名稱Buildings of Spherical Type and Finite BN-Pairs年度引用




書目名稱Buildings of Spherical Type and Finite BN-Pairs年度引用學科排名




書目名稱Buildings of Spherical Type and Finite BN-Pairs讀者反饋




書目名稱Buildings of Spherical Type and Finite BN-Pairs讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:29:16 | 只看該作者
0075-8434 held at Oberwolfach in April 1968. Their main purpose is to present the solution of the following two problems: (A) Determination of the buildings of rank >; and irreducible, spherical type, other than ~ and H ("of spherical type" means "with finite Weyl 4 group", about the excluded types H, cf. th
板凳
發(fā)表于 2025-3-22 02:41:19 | 只看該作者
地板
發(fā)表于 2025-3-22 07:56:39 | 只看該作者
5#
發(fā)表于 2025-3-22 12:44:34 | 只看該作者
Potenzen, Logarithmus, Umkehrfunktion,implies B ∈ Δ; the rank of an element of Δ is its cardinality (as a subset of V ). . Δ, denoted by rk Δ, is by definition sup {rk A ∣ A ∈ Δ}. A complex is called a . if it is isomorphic to the set of all subsets of a given set, ordered by inclusion. Hereafter, Δ always denotes a complex.
6#
發(fā)表于 2025-3-22 13:03:49 | 只看該作者
Teubner Studienbücher Mathematikam over Ψ (in the sense of 2.11) defined in the usual way . an orientation of each multiple stroke, telling which extremity of this stroke has the smallest length; when we want to disregard these orientations, we talk about the diagram . the Dynkin diagram.
7#
發(fā)表于 2025-3-22 18:56:48 | 只看該作者
Complexes,implies B ∈ Δ; the rank of an element of Δ is its cardinality (as a subset of V ). . Δ, denoted by rk Δ, is by definition sup {rk A ∣ A ∈ Δ}. A complex is called a . if it is isomorphic to the set of all subsets of a given set, ordered by inclusion. Hereafter, Δ always denotes a complex.
8#
發(fā)表于 2025-3-22 21:15:18 | 只看該作者
The building of a semi-simple algebraic group,am over Ψ (in the sense of 2.11) defined in the usual way . an orientation of each multiple stroke, telling which extremity of this stroke has the smallest length; when we want to disregard these orientations, we talk about the diagram . the Dynkin diagram.
9#
發(fā)表于 2025-3-23 01:33:26 | 只看該作者
10#
發(fā)表于 2025-3-23 05:59:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
旬邑县| 读书| 嘉兴市| 贵州省| 金坛市| 苏尼特左旗| 南华县| 五河县| 枞阳县| 漳州市| 安丘市| 昭觉县| 镇雄县| 曲松县| 阳谷县| 湾仔区| 满洲里市| 通河县| 贡山| 湟源县| 茂名市| 白山市| 宿松县| 汕尾市| 康乐县| 永春县| 福海县| 襄城县| 西藏| 盐山县| 平远县| 金阳县| 永德县| 永登县| 盘山县| 博爱县| 桐柏县| 西林县| 黄平县| 元阳县| 乐业县|