找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Buildings of Spherical Type and Finite BN-Pairs; Jacques Tits Book 1974 Springer-Verlag Berlin Heidelberg 1974 Finite.Morphism.algebra.alg

[復制鏈接]
樓主: Lensometer
11#
發(fā)表于 2025-3-23 10:42:08 | 只看該作者
12#
發(fā)表于 2025-3-23 14:52:39 | 只看該作者
https://doi.org/10.1007/978-3-8351-9000-9We recall that all buildings considered here are supposed to have finite Weyl complexes.
13#
發(fā)表于 2025-3-23 18:44:03 | 只看該作者
https://doi.org/10.1007/978-3-8351-9000-9In this section, we briefly recall some basic facts about sesquilinear forms, mainly in order to fix our terminology. For further details, see for instance [11], [28].
14#
發(fā)表于 2025-3-24 01:25:28 | 只看該作者
Teubner Studienbücher MathematikTHEOREM. . K . k, . n. : K → k . 3 . K. . (7.2.6) . K × k. → k . . . x. ∈ K . x. ∈ k . i = 1, 2, 3, 4.
15#
發(fā)表于 2025-3-24 04:39:13 | 只看該作者
Grenzwerte von Funktionen und StetigkeitA total ordering (resp. a numbering from 1 to 4) of the vertices of the diagram F. is called . if two consecutive vertices are joined by a single or double stroke (resp. if the ordering determined by this numbering is natural).
16#
發(fā)表于 2025-3-24 07:01:10 | 只看該作者
,Einführung in die Funktionalanalysis,In 6.3, 7.4, 7.12, 10.13, we have seen that the study of weak buildings of the types A., C., D., F. is equivalent to the study of some “spaces” (projective spaces, polar spaces, etc.). The methods we have used to associate spaces to buildings are special cases of a general procedure which we shall describe here.
17#
發(fā)表于 2025-3-24 13:25:57 | 只看該作者
18#
發(fā)表于 2025-3-24 18:35:54 | 只看該作者
19#
發(fā)表于 2025-3-24 22:18:34 | 只看該作者
Buildings of type Cn. II. Projective embeddings of polar spaces,In this section, we briefly recall some basic facts about sesquilinear forms, mainly in order to fix our terminology. For further details, see for instance [11], [28].
20#
發(fā)表于 2025-3-25 00:46:24 | 只看該作者
Buildings of type Cn. III. Non-embeddable polar spaces,THEOREM. . K . k, . n. : K → k . 3 . K. . (7.2.6) . K × k. → k . . . x. ∈ K . x. ∈ k . i = 1, 2, 3, 4.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
沈阳市| 高台县| 临高县| 甘洛县| 仲巴县| 枝江市| 乌兰县| 昭觉县| 孟村| 化隆| 闵行区| 明溪县| 苏尼特左旗| 南投县| 米脂县| 扎兰屯市| 沛县| 邯郸县| 水城县| 聊城市| 宝清县| 离岛区| 三原县| 巫溪县| 五莲县| 土默特左旗| 徐闻县| 沿河| 喀喇沁旗| 博白县| 太保市| 九台市| 柳江县| 察哈| 广昌县| 色达县| 云林县| 油尖旺区| 石楼县| 上林县| 铜梁县|