找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 4th International Wo Alessandro Crimi,Spyridon Bakas,Theo van

[復(fù)制鏈接]
查看: 17084|回復(fù): 61
樓主
發(fā)表于 2025-3-21 19:56:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
期刊簡稱4th International Wo
影響因子2023Alessandro Crimi,Spyridon Bakas,Theo van Walsum
視頻videohttp://file.papertrans.cn/191/190323/190323.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 4th International Wo Alessandro Crimi,Spyridon Bakas,Theo van
影響因子.This two-volume set LNCS 11383 and 11384 ?constitutes revised selected papers from the 4th International MICCAI Brainlesion Workshop, BrainLes 2018, as well as the International Multimodal Brain Tumor Segmentation, BraTS, Ischemic Stroke Lesion Segmentation, ISLES,? MR Brain Image Segmentation, MRBrainS18, Computational Precision Medicine, CPM, and ?Stroke Workshop on Imaging and Treatment Challenges, SWITCH, which were held jointly at the Medical Image Computing for Computer Assisted Intervention Conference, MICCAI, in Granada, Spain, in September 2018. . The 92 papers presented in this volume were carefully reviewed and selected from 95 submissions. They were organized in topical sections named: brain lesion image analysis; brain tumor image segmentation; ischemic stroke lesion image segmentation; grand challenge on MR brain segmentation; computational precision medicine; stroke workshop on imaging and treatment challenges..
Pindex Conference proceedings 2019
The information of publication is updating

書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries影響因子(影響力)




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries影響因子(影響力)學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries網(wǎng)絡(luò)公開度




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries被引頻次




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries被引頻次學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries年度引用




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries年度引用學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries讀者反饋




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:47:15 | 只看該作者
Segmenting Brain Tumors from MRI Using Cascaded Multi-modal U-Netse, developing automated techniques for reproducible detection and segmentation of brain tumors from magnetic resonance imaging is a vital research topic. In this paper, we present a deep learning-powered approach for brain tumor segmentation which exploits multiple magnetic-resonance modalities and
板凳
發(fā)表于 2025-3-22 01:39:51 | 只看該作者
Automatic Brain Tumor Segmentation by Exploring the Multi-modality Complementary Information and Casal networks (CNNs) have been widely used for this task. Most of the existing methods integrate the multi-modality information by merging them as multiple channels at the input of the network. However, explicitly exploring the complementary information among different modalities has not been well stu
地板
發(fā)表于 2025-3-22 05:12:15 | 只看該作者
Deep Convolutional Neural Networks Using U-Net for Automatic Brain Tumor Segmentation in Multimodal ns and image intensities of various tumors types. This paper presents a fully automated and efficient brain tumor segmentation method based on 2D Deep Convolutional Neural Networks (DNNs) which automatically extracts the whole tumor and intra-tumor regions, including enhancing tumor, edema and necro
5#
發(fā)表于 2025-3-22 11:52:50 | 只看該作者
6#
發(fā)表于 2025-3-22 14:29:51 | 只看該作者
Automatic Brain Tumor Segmentation Using Convolutional Neural Networks with Test-Time Augmentational neural networks (CNNs) have been widely used for this task. Due to the relatively small data set for training, data augmentation at training time has been commonly used for better performance of CNNs. Recent works also demonstrated the usefulness of data augmentation at test time, in addition to
7#
發(fā)表于 2025-3-22 20:53:17 | 只看該作者
8#
發(fā)表于 2025-3-23 01:06:38 | 只看該作者
9#
發(fā)表于 2025-3-23 03:51:08 | 只看該作者
10#
發(fā)表于 2025-3-23 08:57:32 | 只看該作者
A Pretrained DenseNet Encoder for Brain Tumor Segmentationecture. We evaluate the use of a densely connected convolutional network encoder (DenseNet) which was pretrained on the ImageNet data set. We detail two network architectures that can take into account multiple 3D images as inputs. This work aims to identify if a generic pretrained network can be us
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜新市| 姚安县| 巴林右旗| 洪湖市| 临泉县| 湘潭县| 博兴县| 沈丘县| 长阳| 南澳县| 华宁县| 清河县| 庆云县| 白玉县| 东海县| 湟源县| 乐安县| 珲春市| 科技| 江口县| 吐鲁番市| 双峰县| 商河县| 彩票| 连江县| 历史| 万年县| 桂东县| 凤阳县| 双鸭山市| 旬邑县| 卫辉市| 安陆市| 达拉特旗| 米易县| 聂荣县| 泉州市| 资兴市| 防城港市| 从化市| 饶河县|