找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 4th International Wo Alessandro Crimi,Spyridon Bakas,Theo van

[復制鏈接]
樓主: Monroe
11#
發(fā)表于 2025-3-23 12:29:42 | 只看該作者
Hierarchical Multi-class Segmentation of Glioma Images Using Networks with Multi-level Activation Funt/nesting is a typical inter-class geometric relationship. In the MICCAI Brain tumor segmentation challenge, with its three hierarchically nested classes ‘whole tumor’, ‘tumor core’, ‘active tumor’, the nested classes relationship is introduced into the 3D-residual-Unet architecture. The network co
12#
發(fā)表于 2025-3-23 14:31:21 | 只看該作者
Brain Tumor Segmentation and Tractographic Feature Extraction from Structural MR Images for Overall For segmentation, we utilize an existing brain parcellation atlas in the MNI152 1?mm space and map this parcellation to each individual subject data. We use deep neural network architectures together with hard negative mining to achieve the final voxel level classification. For survival prediction,
13#
發(fā)表于 2025-3-23 19:39:28 | 只看該作者
Glioma Prognosis: Segmentation of the Tumor and Survival Prediction Using Shape, Geometric and Clinince between subjects with tumor and healthy subjects. In this paper, we exploit a convolutional neural network (CNN) with hypercolumn technique to segment tumor from healthy brain tissue. Hypercolumn is the concatenation of a set of vectors which form by extracting convolutional features from multip
14#
發(fā)表于 2025-3-23 23:01:29 | 只看該作者
15#
發(fā)表于 2025-3-24 04:58:22 | 只看該作者
16#
發(fā)表于 2025-3-24 07:02:51 | 只看該作者
17#
發(fā)表于 2025-3-24 10:58:45 | 只看該作者
18#
發(fā)表于 2025-3-24 16:04:44 | 只看該作者
19#
發(fā)表于 2025-3-24 20:30:33 | 只看該作者
Segmentation of Brain Tumors and Patient Survival Prediction: Methods for the BraTS 2018 Challengelocated tumor into tumor core, enhanced tumor, and peritumoral edema..The survival prediction of the patients is done with a rather simple, yet accurate algorithm which outperformed other tested approaches on the train set when thoroughly cross-validated. This finding is consistent with our performa
20#
發(fā)表于 2025-3-25 02:12:12 | 只看該作者
Automatic Brain Tumor Segmentation by Exploring the Multi-modality Complementary Information and Casatial resolution and the number of parameters is only 0.5M. In the BraTS 2018 segmentation task, experiments with the validation dataset show that the proposed method helps to improve the brain tumor segmentation accuracy compared with the common merging strategy. The mean Dice scores on the validat
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
化隆| 刚察县| 社会| 吉首市| 兰西县| 会同县| 湘乡市| 大足县| 科技| 元谋县| 高安市| 辽源市| 吉木乃县| 永仁县| 浦东新区| 长治市| 扎囊县| 罗源县| 乌鲁木齐县| 黄平县| 浦江县| 大竹县| 曲麻莱县| 衡阳县| 西林县| 乌拉特后旗| 都江堰市| 锡林浩特市| 济南市| 大英县| 崇信县| 柳林县| 湖州市| 淮南市| 新乐市| 西和县| 庆城县| 梅州市| 色达县| 米易县| 洞头县|