找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 4th International Wo Alessandro Crimi,Spyridon Bakas,Theo van

[復(fù)制鏈接]
樓主: Monroe
11#
發(fā)表于 2025-3-23 12:29:42 | 只看該作者
Hierarchical Multi-class Segmentation of Glioma Images Using Networks with Multi-level Activation Funt/nesting is a typical inter-class geometric relationship. In the MICCAI Brain tumor segmentation challenge, with its three hierarchically nested classes ‘whole tumor’, ‘tumor core’, ‘a(chǎn)ctive tumor’, the nested classes relationship is introduced into the 3D-residual-Unet architecture. The network co
12#
發(fā)表于 2025-3-23 14:31:21 | 只看該作者
Brain Tumor Segmentation and Tractographic Feature Extraction from Structural MR Images for Overall For segmentation, we utilize an existing brain parcellation atlas in the MNI152 1?mm space and map this parcellation to each individual subject data. We use deep neural network architectures together with hard negative mining to achieve the final voxel level classification. For survival prediction,
13#
發(fā)表于 2025-3-23 19:39:28 | 只看該作者
Glioma Prognosis: Segmentation of the Tumor and Survival Prediction Using Shape, Geometric and Clinince between subjects with tumor and healthy subjects. In this paper, we exploit a convolutional neural network (CNN) with hypercolumn technique to segment tumor from healthy brain tissue. Hypercolumn is the concatenation of a set of vectors which form by extracting convolutional features from multip
14#
發(fā)表于 2025-3-23 23:01:29 | 只看該作者
15#
發(fā)表于 2025-3-24 04:58:22 | 只看該作者
16#
發(fā)表于 2025-3-24 07:02:51 | 只看該作者
17#
發(fā)表于 2025-3-24 10:58:45 | 只看該作者
18#
發(fā)表于 2025-3-24 16:04:44 | 只看該作者
19#
發(fā)表于 2025-3-24 20:30:33 | 只看該作者
Segmentation of Brain Tumors and Patient Survival Prediction: Methods for the BraTS 2018 Challengelocated tumor into tumor core, enhanced tumor, and peritumoral edema..The survival prediction of the patients is done with a rather simple, yet accurate algorithm which outperformed other tested approaches on the train set when thoroughly cross-validated. This finding is consistent with our performa
20#
發(fā)表于 2025-3-25 02:12:12 | 只看該作者
Automatic Brain Tumor Segmentation by Exploring the Multi-modality Complementary Information and Casatial resolution and the number of parameters is only 0.5M. In the BraTS 2018 segmentation task, experiments with the validation dataset show that the proposed method helps to improve the brain tumor segmentation accuracy compared with the common merging strategy. The mean Dice scores on the validat
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
布拖县| 久治县| 曲周县| 西乌| 武平县| 基隆市| 宁津县| 大港区| 松溪县| 济宁市| 永善县| 阿巴嘎旗| 永嘉县| 鱼台县| 无极县| 化隆| 漯河市| 金湖县| 图木舒克市| 昭觉县| 林甸县| 称多县| 临江市| 田林县| 平陆县| 德兴市| 彭阳县| 连城县| 古蔺县| 乌兰县| 广宗县| 滦南县| 马鞍山市| 理塘县| 黑水县| 定边县| 元朗区| 德钦县| 西充县| 重庆市| 莱芜市|