找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bicomplex Holomorphic Functions; The Algebra, Geometr M. Elena Luna-Elizarrarás,Michael Shapiro,Adrian V Book 2015 Springer International P

[復制鏈接]
樓主: AMUSE
11#
發(fā)表于 2025-3-23 10:57:07 | 只看該作者
Second Order Complex and Hyperbolic Differential Operators,ex variable theory and Clifford analysis are considered as refinements of the corresponding harmonic function theories. This relation is due to the following factorizations of the respective Laplace operators.
12#
發(fā)表于 2025-3-23 16:55:27 | 只看該作者
Motivating a Therapeutic Approach in 1844, [36], [37]. Quaternions arise by considering three imaginary units, i, j, k that anticommute and such that ij = k. The beauty of the theory of quaternions is that they form a field, where all the customary operations can be accomplished. Their blemish, if one can use this word, is the loss
13#
發(fā)表于 2025-3-23 19:04:44 | 只看該作者
14#
發(fā)表于 2025-3-23 23:55:18 | 只看該作者
15#
發(fā)表于 2025-3-24 04:57:09 | 只看該作者
An American Landscape Conversationcial importance for the theories of both classes of functions. On the general level, the same occurs with hyperholomorphic (synonymously - monogenic, regular) functions of (real) Clifford analysis and the harmonic functions of the respective number of (real) variables. By this reason, both one compl
16#
發(fā)表于 2025-3-24 07:14:44 | 只看該作者
Lu Ann De Cunzo,Nedda Moqtaderieach the highest level of generality for curves and surfaces involved since our aim is to present some basic ideas and structures for those formulas; the more general setting will be presented elsewhere.
17#
發(fā)表于 2025-3-24 13:46:42 | 只看該作者
18#
發(fā)表于 2025-3-24 17:58:59 | 只看該作者
19#
發(fā)表于 2025-3-24 19:29:46 | 只看該作者
Lu Ann De Cunzo,Nedda Moqtaderieach the highest level of generality for curves and surfaces involved since our aim is to present some basic ideas and structures for those formulas; the more general setting will be presented elsewhere.
20#
發(fā)表于 2025-3-24 23:47:22 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
栖霞市| 桐城市| 河津市| 荔浦县| 玉龙| 腾冲县| 南皮县| 丹凤县| 铁岭市| 孟津县| 陇西县| 宜兰县| 军事| 吴桥县| 西乡县| 古蔺县| 沂南县| 双桥区| 古丈县| 梁山县| 福鼎市| 山阴县| 察隅县| 贺州市| 南康市| 炉霍县| 淮安市| 盐池县| 乐昌市| 新巴尔虎左旗| 定兴县| 吴川市| 子洲县| 阿克苏市| 蓝山县| 陕西省| 江油市| 江孜县| 临漳县| 顺昌县| 长宁区|