找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bicomplex Holomorphic Functions; The Algebra, Geometr M. Elena Luna-Elizarrarás,Michael Shapiro,Adrian V Book 2015 Springer International P

[復(fù)制鏈接]
樓主: AMUSE
21#
發(fā)表于 2025-3-25 07:04:44 | 只看該作者
Integral Formulas and Theorems,each the highest level of generality for curves and surfaces involved since our aim is to present some basic ideas and structures for those formulas; the more general setting will be presented elsewhere.
22#
發(fā)表于 2025-3-25 09:32:08 | 只看該作者
23#
發(fā)表于 2025-3-25 12:01:27 | 只看該作者
Frontiers in Mathematicshttp://image.papertrans.cn/b/image/185488.jpg
24#
發(fā)表于 2025-3-25 19:15:26 | 只看該作者
25#
發(fā)表于 2025-3-25 21:06:33 | 只看該作者
978-3-319-24866-0Springer International Publishing Switzerland 2015
26#
發(fā)表于 2025-3-26 04:10:02 | 只看該作者
In Search of a Viable Epistemic AccountThe geometry of complex numbers coincides with the geometry of the Euclidean space ., and this is because of a good compatibility between the algebraic structure of . and the geometry of ., which is expressed by the equality
27#
發(fā)表于 2025-3-26 07:18:14 | 只看該作者
In Search of a Viable Epistemic AccountIn this section we will investigate the complex straight lines in . from both the algebraic and the geometric points of view. We will start by describing the wellknown case of real straight lines in .(i), which we use as reference for the case of complex and hyperbolic lines in ..
28#
發(fā)表于 2025-3-26 08:40:51 | 只看該作者
https://doi.org/10.1007/978-3-319-62545-4The notion of limit for complex functions is well known and we will not rediscuss it here. Note that the formal proofs of its properties depend strongly on the properties of the modulus of a complex number;
29#
發(fā)表于 2025-3-26 14:51:39 | 只看該作者
https://doi.org/10.1057/9780230307469In this chapter we will study bicomplex-valued functions of a bicomplex variable, and we will examine the notions of derivability and of holomorphy for such functions (see [46]).
30#
發(fā)表于 2025-3-26 16:50:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 01:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松江区| 郎溪县| 清河县| 古田县| 孟州市| 始兴县| 云梦县| 芮城县| 修武县| 叶城县| 桃园市| 明溪县| 铜川市| 山东省| 泸定县| 镶黄旗| 垫江县| 岚皋县| 隆子县| 柳江县| 沧州市| 若尔盖县| 英山县| 彩票| 敦化市| 固阳县| 青河县| 廊坊市| 吉木萨尔县| 望城县| 玉溪市| 方正县| 昂仁县| 饶阳县| 离岛区| 平顶山市| 仁寿县| 家居| 乐东| 喀喇| 九寨沟县|