找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bicomplex Holomorphic Functions; The Algebra, Geometr M. Elena Luna-Elizarrarás,Michael Shapiro,Adrian V Book 2015 Springer International P

[復(fù)制鏈接]
樓主: AMUSE
11#
發(fā)表于 2025-3-23 10:57:07 | 只看該作者
Second Order Complex and Hyperbolic Differential Operators,ex variable theory and Clifford analysis are considered as refinements of the corresponding harmonic function theories. This relation is due to the following factorizations of the respective Laplace operators.
12#
發(fā)表于 2025-3-23 16:55:27 | 只看該作者
Motivating a Therapeutic Approach in 1844, [36], [37]. Quaternions arise by considering three imaginary units, i, j, k that anticommute and such that ij = k. The beauty of the theory of quaternions is that they form a field, where all the customary operations can be accomplished. Their blemish, if one can use this word, is the loss
13#
發(fā)表于 2025-3-23 19:04:44 | 只看該作者
14#
發(fā)表于 2025-3-23 23:55:18 | 只看該作者
15#
發(fā)表于 2025-3-24 04:57:09 | 只看該作者
An American Landscape Conversationcial importance for the theories of both classes of functions. On the general level, the same occurs with hyperholomorphic (synonymously - monogenic, regular) functions of (real) Clifford analysis and the harmonic functions of the respective number of (real) variables. By this reason, both one compl
16#
發(fā)表于 2025-3-24 07:14:44 | 只看該作者
Lu Ann De Cunzo,Nedda Moqtaderieach the highest level of generality for curves and surfaces involved since our aim is to present some basic ideas and structures for those formulas; the more general setting will be presented elsewhere.
17#
發(fā)表于 2025-3-24 13:46:42 | 只看該作者
18#
發(fā)表于 2025-3-24 17:58:59 | 只看該作者
19#
發(fā)表于 2025-3-24 19:29:46 | 只看該作者
Lu Ann De Cunzo,Nedda Moqtaderieach the highest level of generality for curves and surfaces involved since our aim is to present some basic ideas and structures for those formulas; the more general setting will be presented elsewhere.
20#
發(fā)表于 2025-3-24 23:47:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 05:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中西区| 青铜峡市| 易门县| 灵寿县| 清苑县| 昌平区| 万载县| 新泰市| 云安县| 登封市| 平山县| 古浪县| 博爱县| 罗城| 寻乌县| 正蓝旗| 自治县| 五原县| 普格县| 正定县| 化德县| 沧州市| 宁津县| 延津县| 南靖县| 沅江市| 青铜峡市| 繁峙县| 松原市| 沂南县| 会昌县| 绵竹市| 泾阳县| 阿克苏市| 枞阳县| 石首市| 新郑市| 休宁县| 常山县| 静乐县| 岳池县|