找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bicomplex Holomorphic Functions; The Algebra, Geometr M. Elena Luna-Elizarrarás,Michael Shapiro,Adrian V Book 2015 Springer International P

[復(fù)制鏈接]
樓主: AMUSE
11#
發(fā)表于 2025-3-23 10:57:07 | 只看該作者
Second Order Complex and Hyperbolic Differential Operators,ex variable theory and Clifford analysis are considered as refinements of the corresponding harmonic function theories. This relation is due to the following factorizations of the respective Laplace operators.
12#
發(fā)表于 2025-3-23 16:55:27 | 只看該作者
Motivating a Therapeutic Approach in 1844, [36], [37]. Quaternions arise by considering three imaginary units, i, j, k that anticommute and such that ij = k. The beauty of the theory of quaternions is that they form a field, where all the customary operations can be accomplished. Their blemish, if one can use this word, is the loss
13#
發(fā)表于 2025-3-23 19:04:44 | 只看該作者
14#
發(fā)表于 2025-3-23 23:55:18 | 只看該作者
15#
發(fā)表于 2025-3-24 04:57:09 | 只看該作者
An American Landscape Conversationcial importance for the theories of both classes of functions. On the general level, the same occurs with hyperholomorphic (synonymously - monogenic, regular) functions of (real) Clifford analysis and the harmonic functions of the respective number of (real) variables. By this reason, both one compl
16#
發(fā)表于 2025-3-24 07:14:44 | 只看該作者
Lu Ann De Cunzo,Nedda Moqtaderieach the highest level of generality for curves and surfaces involved since our aim is to present some basic ideas and structures for those formulas; the more general setting will be presented elsewhere.
17#
發(fā)表于 2025-3-24 13:46:42 | 只看該作者
18#
發(fā)表于 2025-3-24 17:58:59 | 只看該作者
19#
發(fā)表于 2025-3-24 19:29:46 | 只看該作者
Lu Ann De Cunzo,Nedda Moqtaderieach the highest level of generality for curves and surfaces involved since our aim is to present some basic ideas and structures for those formulas; the more general setting will be presented elsewhere.
20#
發(fā)表于 2025-3-24 23:47:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 05:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
亳州市| 商水县| 北碚区| 栖霞市| 富民县| 浦东新区| 九江市| 左云县| 三原县| 哈尔滨市| 山阳县| 沙雅县| 苗栗市| 稷山县| 柞水县| 前郭尔| 原阳县| 武功县| 集安市| 壤塘县| 石景山区| 抚远县| 襄樊市| 谢通门县| 武宣县| 南充市| 陵水| 定襄县| 凌源市| 福州市| 京山县| 无棣县| 当涂县| 突泉县| 长治市| 苗栗县| 新化县| 萍乡市| 广宗县| 谢通门县| 大庆市|