找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bicomplex Holomorphic Functions; The Algebra, Geometr M. Elena Luna-Elizarrarás,Michael Shapiro,Adrian V Book 2015 Springer International P

[復(fù)制鏈接]
樓主: AMUSE
31#
發(fā)表于 2025-3-26 23:14:58 | 只看該作者
32#
發(fā)表于 2025-3-27 04:38:03 | 只看該作者
Lines and curves in ,,In this section we will investigate the complex straight lines in . from both the algebraic and the geometric points of view. We will start by describing the wellknown case of real straight lines in .(i), which we use as reference for the case of complex and hyperbolic lines in ..
33#
發(fā)表于 2025-3-27 07:56:55 | 只看該作者
34#
發(fā)表于 2025-3-27 10:45:12 | 只看該作者
35#
發(fā)表于 2025-3-27 15:25:43 | 只看該作者
Some Properties of Bicomplex Holomorphic Functions,In what follows, we investigate several properties of bicomplex holomorphic functions defined on a set Ω in ..
36#
發(fā)表于 2025-3-27 21:17:49 | 只看該作者
Introduction, in 1844, [36], [37]. Quaternions arise by considering three imaginary units, i, j, k that anticommute and such that ij = k. The beauty of the theory of quaternions is that they form a field, where all the customary operations can be accomplished. Their blemish, if one can use this word, is the loss
37#
發(fā)表于 2025-3-27 22:47:46 | 只看該作者
The Bicomplex Numbers,ommuting imaginary units, i.e., .. Thus bicomplex numbers are “complex numbers with complex coefficients”, which explains the name of bicomplex, and in what follows we will try to emphasize the similarities between the properties of complex and bicomplex numbers. As one might expect, although the bi
38#
發(fā)表于 2025-3-28 05:29:15 | 只看該作者
39#
發(fā)表于 2025-3-28 09:15:03 | 只看該作者
Second Order Complex and Hyperbolic Differential Operators,cial importance for the theories of both classes of functions. On the general level, the same occurs with hyperholomorphic (synonymously - monogenic, regular) functions of (real) Clifford analysis and the harmonic functions of the respective number of (real) variables. By this reason, both one compl
40#
發(fā)表于 2025-3-28 12:43:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武清区| 淮北市| 石家庄市| 阳江市| 英山县| 彭阳县| 简阳市| 潮州市| 永昌县| 彭山县| 中牟县| 五华县| 称多县| 富锦市| 新巴尔虎右旗| 东阿县| 吉首市| 肇源县| 文安县| 石河子市| 阳春市| 张家港市| 常山县| 和顺县| 青海省| 社旗县| 遵化市| 攀枝花市| 远安县| 会昌县| 科技| 玉门市| 无为县| 霍邱县| 开鲁县| 宝兴县| 司法| 滕州市| 澜沧| 上高县| 边坝县|