找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphic Forms, Representation Theory and Arithmetic; Papers presented at Gelbart Harder Iwasawa,Jacquet Katz Piatetski-Shap Conference

[復制鏈接]
樓主: necrosis
11#
發(fā)表于 2025-3-23 10:11:01 | 只看該作者
12#
發(fā)表于 2025-3-23 16:03:06 | 只看該作者
13#
發(fā)表于 2025-3-23 19:17:29 | 只看該作者
https://doi.org/10.1007/978-1-4899-6683-4G. Shimura has shown how to attach to each holomorphic cusp form of half-integral weight a modular form of even integral weight. More precisely, suppose f(z) is a cusp form of weight k/2, level N, and character χ.
14#
發(fā)表于 2025-3-23 22:54:18 | 只看該作者
The Transport of Acid PollutionOur starting point is a very general question. Let Γ be an arithmetic subgroup of a reductive Lie group G.. Then the group T acts on the symmetric space X = G./K. where K. ? G. is a maximal compact subgroup.
15#
發(fā)表于 2025-3-24 03:46:34 | 只看該作者
16#
發(fā)表于 2025-3-24 08:18:30 | 只看該作者
Strategies for Reducing Acid RainSuppose . is a modular cusp form with Fourier expansion:
17#
發(fā)表于 2025-3-24 14:11:38 | 只看該作者
,On Shimura’s Correspondence for Modular Forms of Half-Integral Weight,G. Shimura has shown how to attach to each holomorphic cusp form of half-integral weight a modular form of even integral weight. More precisely, suppose f(z) is a cusp form of weight k/2, level N, and character χ.
18#
發(fā)表于 2025-3-24 14:54:30 | 只看該作者
19#
發(fā)表于 2025-3-24 19:37:33 | 只看該作者
,On P-ADIC Representations Associated with ?p -Extensions,. paper, we shall discuss some results on the p-adic representations of Galois groups, associated with so-called cyclotomic ?.-extensions of finite algebraic number fields.
20#
發(fā)表于 2025-3-25 01:19:27 | 只看該作者
Dirichlet Series for the Group GL(N),Suppose . is a modular cusp form with Fourier expansion:
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 14:01
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
峨眉山市| 巴南区| 卢龙县| 庆城县| 曲松县| 共和县| 五常市| 平和县| 中西区| 梁山县| 淮南市| 鄯善县| 蓬安县| 铁岭县| 体育| 封开县| 瓦房店市| 茶陵县| 额济纳旗| 贡嘎县| 安龙县| 建昌县| 梨树县| 隆安县| 迭部县| 张掖市| 棋牌| 金昌市| 红原县| 西城区| 彭阳县| 临城县| 辽中县| 赣州市| 夏津县| 汉沽区| 同仁县| 米易县| 府谷县| 白沙| 通州区|