找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphic Forms, Representation Theory and Arithmetic; Papers presented at Gelbart Harder Iwasawa,Jacquet Katz Piatetski-Shap Conference

[復制鏈接]
樓主: necrosis
11#
發(fā)表于 2025-3-23 10:11:01 | 只看該作者
12#
發(fā)表于 2025-3-23 16:03:06 | 只看該作者
13#
發(fā)表于 2025-3-23 19:17:29 | 只看該作者
https://doi.org/10.1007/978-1-4899-6683-4G. Shimura has shown how to attach to each holomorphic cusp form of half-integral weight a modular form of even integral weight. More precisely, suppose f(z) is a cusp form of weight k/2, level N, and character χ.
14#
發(fā)表于 2025-3-23 22:54:18 | 只看該作者
The Transport of Acid PollutionOur starting point is a very general question. Let Γ be an arithmetic subgroup of a reductive Lie group G.. Then the group T acts on the symmetric space X = G./K. where K. ? G. is a maximal compact subgroup.
15#
發(fā)表于 2025-3-24 03:46:34 | 只看該作者
16#
發(fā)表于 2025-3-24 08:18:30 | 只看該作者
Strategies for Reducing Acid RainSuppose . is a modular cusp form with Fourier expansion:
17#
發(fā)表于 2025-3-24 14:11:38 | 只看該作者
,On Shimura’s Correspondence for Modular Forms of Half-Integral Weight,G. Shimura has shown how to attach to each holomorphic cusp form of half-integral weight a modular form of even integral weight. More precisely, suppose f(z) is a cusp form of weight k/2, level N, and character χ.
18#
發(fā)表于 2025-3-24 14:54:30 | 只看該作者
19#
發(fā)表于 2025-3-24 19:37:33 | 只看該作者
,On P-ADIC Representations Associated with ?p -Extensions,. paper, we shall discuss some results on the p-adic representations of Galois groups, associated with so-called cyclotomic ?.-extensions of finite algebraic number fields.
20#
發(fā)表于 2025-3-25 01:19:27 | 只看該作者
Dirichlet Series for the Group GL(N),Suppose . is a modular cusp form with Fourier expansion:
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 14:01
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
灌南县| 安庆市| 江孜县| 佛坪县| 和林格尔县| 金川县| 彰化县| 连江县| 隆化县| 静宁县| 新田县| 射阳县| 玉屏| 云南省| 平邑县| 丰台区| 布拖县| 太仆寺旗| 武宁县| 曲周县| 南阳市| 华坪县| 定边县| 准格尔旗| 英山县| 拜城县| 章丘市| 兴宁市| 梁河县| 视频| 旌德县| 商河县| 当阳市| 通城县| 通山县| 大余县| 偏关县| 沿河| 兴文县| 洪江市| 星子县|