找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphic Forms, Representation Theory and Arithmetic; Papers presented at Gelbart Harder Iwasawa,Jacquet Katz Piatetski-Shap Conference

[復(fù)制鏈接]
查看: 8170|回復(fù): 48
樓主
發(fā)表于 2025-3-21 18:50:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Automorphic Forms, Representation Theory and Arithmetic
期刊簡稱Papers presented at
影響因子2023Gelbart Harder Iwasawa,Jacquet Katz Piatetski-Shap
視頻videohttp://file.papertrans.cn/167/166630/166630.mp4
學(xué)科分類Tata Institute Studies in Mathematics
圖書封面Titlebook: Automorphic Forms, Representation Theory and Arithmetic; Papers presented at  Gelbart Harder Iwasawa,Jacquet Katz Piatetski-Shap Conference
Pindex Conference proceedings 19811st edition
The information of publication is updating

書目名稱Automorphic Forms, Representation Theory and Arithmetic影響因子(影響力)




書目名稱Automorphic Forms, Representation Theory and Arithmetic影響因子(影響力)學(xué)科排名




書目名稱Automorphic Forms, Representation Theory and Arithmetic網(wǎng)絡(luò)公開度




書目名稱Automorphic Forms, Representation Theory and Arithmetic網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Automorphic Forms, Representation Theory and Arithmetic被引頻次




書目名稱Automorphic Forms, Representation Theory and Arithmetic被引頻次學(xué)科排名




書目名稱Automorphic Forms, Representation Theory and Arithmetic年度引用




書目名稱Automorphic Forms, Representation Theory and Arithmetic年度引用學(xué)科排名




書目名稱Automorphic Forms, Representation Theory and Arithmetic讀者反饋




書目名稱Automorphic Forms, Representation Theory and Arithmetic讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:05:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:55:02 | 只看該作者
June 1914: A snapshot as the storm breaks,functions of algebraic varieties over finite fields. This connection was exploited by Weil; one of the very first applications that Weil gave of the then newly proven “Riemann Hypothesis” for curves over finite fields was the estimation of the absolute value of Kloosterman sums (cf[46]).
地板
發(fā)表于 2025-3-22 06:22:18 | 只看該作者
5#
發(fā)表于 2025-3-22 10:11:00 | 只看該作者
Tata Institute Studies in Mathematicshttp://image.papertrans.cn/b/image/166630.jpg
6#
發(fā)表于 2025-3-22 15:24:02 | 只看該作者
Strategies for Reducing Acid Raine in the representation theory of Lie groups. Its close relative, the singular spectrum of a hyperfunction, has already been discussed in a special context in [K-V] which served as the catalyst for this note. The purpose here is to define and discuss general properties of wave front sets of represen
7#
發(fā)表于 2025-3-22 20:15:19 | 只看該作者
June 1914: A snapshot as the storm breaks,functions of algebraic varieties over finite fields. This connection was exploited by Weil; one of the very first applications that Weil gave of the then newly proven “Riemann Hypothesis” for curves over finite fields was the estimation of the absolute value of Kloosterman sums (cf[46]).
8#
發(fā)表于 2025-3-23 00:52:36 | 只看該作者
9#
發(fā)表于 2025-3-23 04:17:19 | 只看該作者
10#
發(fā)表于 2025-3-23 07:04:30 | 只看該作者
J. G. Weisend II,G. Terence Meadenned, especially for certain types of characters [6; II, III, IV]. It is appropriate to present a paper on this subject here since it was at the Tata Institute that the complex quadratic case was treated in the lectures of Siegel [4] and later work of Ramachandra [3]. It has become clear in recent ye
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
含山县| 江西省| 广南县| 社会| 天镇县| 岢岚县| 泾川县| 江油市| 汤阴县| 五常市| 偃师市| 嵩明县| 秦安县| 娄底市| 赤壁市| 东台市| 呈贡县| 新河县| 谷城县| 缙云县| 壤塘县| 会同县| 兴化市| 凭祥市| 达孜县| 绥阳县| 汉中市| 沙田区| 平定县| 宜州市| 晋宁县| 庄河市| 格尔木市| 玛纳斯县| 邢台县| 武乡县| 琼海市| 双桥区| 徐水县| 永嘉县| 彩票|