找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Automorphic Forms, Representation Theory and Arithmetic; Papers presented at Gelbart Harder Iwasawa,Jacquet Katz Piatetski-Shap Conference

[復(fù)制鏈接]
查看: 8178|回復(fù): 48
樓主
發(fā)表于 2025-3-21 18:50:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Automorphic Forms, Representation Theory and Arithmetic
期刊簡(jiǎn)稱Papers presented at
影響因子2023Gelbart Harder Iwasawa,Jacquet Katz Piatetski-Shap
視頻videohttp://file.papertrans.cn/167/166630/166630.mp4
學(xué)科分類(lèi)Tata Institute Studies in Mathematics
圖書(shū)封面Titlebook: Automorphic Forms, Representation Theory and Arithmetic; Papers presented at  Gelbart Harder Iwasawa,Jacquet Katz Piatetski-Shap Conference
Pindex Conference proceedings 19811st edition
The information of publication is updating

書(shū)目名稱Automorphic Forms, Representation Theory and Arithmetic影響因子(影響力)




書(shū)目名稱Automorphic Forms, Representation Theory and Arithmetic影響因子(影響力)學(xué)科排名




書(shū)目名稱Automorphic Forms, Representation Theory and Arithmetic網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Automorphic Forms, Representation Theory and Arithmetic網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Automorphic Forms, Representation Theory and Arithmetic被引頻次




書(shū)目名稱Automorphic Forms, Representation Theory and Arithmetic被引頻次學(xué)科排名




書(shū)目名稱Automorphic Forms, Representation Theory and Arithmetic年度引用




書(shū)目名稱Automorphic Forms, Representation Theory and Arithmetic年度引用學(xué)科排名




書(shū)目名稱Automorphic Forms, Representation Theory and Arithmetic讀者反饋




書(shū)目名稱Automorphic Forms, Representation Theory and Arithmetic讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:05:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:55:02 | 只看該作者
June 1914: A snapshot as the storm breaks,functions of algebraic varieties over finite fields. This connection was exploited by Weil; one of the very first applications that Weil gave of the then newly proven “Riemann Hypothesis” for curves over finite fields was the estimation of the absolute value of Kloosterman sums (cf[46]).
地板
發(fā)表于 2025-3-22 06:22:18 | 只看該作者
5#
發(fā)表于 2025-3-22 10:11:00 | 只看該作者
Tata Institute Studies in Mathematicshttp://image.papertrans.cn/b/image/166630.jpg
6#
發(fā)表于 2025-3-22 15:24:02 | 只看該作者
Strategies for Reducing Acid Raine in the representation theory of Lie groups. Its close relative, the singular spectrum of a hyperfunction, has already been discussed in a special context in [K-V] which served as the catalyst for this note. The purpose here is to define and discuss general properties of wave front sets of represen
7#
發(fā)表于 2025-3-22 20:15:19 | 只看該作者
June 1914: A snapshot as the storm breaks,functions of algebraic varieties over finite fields. This connection was exploited by Weil; one of the very first applications that Weil gave of the then newly proven “Riemann Hypothesis” for curves over finite fields was the estimation of the absolute value of Kloosterman sums (cf[46]).
8#
發(fā)表于 2025-3-23 00:52:36 | 只看該作者
9#
發(fā)表于 2025-3-23 04:17:19 | 只看該作者
10#
發(fā)表于 2025-3-23 07:04:30 | 只看該作者
J. G. Weisend II,G. Terence Meadenned, especially for certain types of characters [6; II, III, IV]. It is appropriate to present a paper on this subject here since it was at the Tata Institute that the complex quadratic case was treated in the lectures of Siegel [4] and later work of Ramachandra [3]. It has become clear in recent ye
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤壁市| 株洲县| 南召县| 神农架林区| 阿鲁科尔沁旗| 炉霍县| 太康县| 那曲县| 夹江县| 龙里县| 旺苍县| 都昌县| 玛曲县| 新营市| 偏关县| 海晏县| 昌都县| 德阳市| 建阳市| 青铜峡市| 合山市| 龙岩市| 吴堡县| 齐河县| 探索| 宁远县| 红桥区| 沙坪坝区| 榆社县| 吴川市| 称多县| 广东省| 越西县| 定襄县| 涿州市| 柳河县| 庐江县| 石台县| 宁都县| 尚志市| 宁阳县|